ebook img

Computer-assisteed proof of a periodic solution in a non-linear feedback DDE PDF

0.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer-assisteed proof of a periodic solution in a non-linear feedback DDE

Computer-assisteed proof of a periodi solution in a non-linear feedba k DDE Mikoªaj Zalewski Institute of Mathemati s, Jagiellonian University 7 Reymonta 5, 30-059 Kraków, Poland 0 0 E-mail: Mikolaj.Zalewskiim.uj.edu.pl 2 n a J 9 Abstra t ] In this paper we rigorously prove thxe′(etx)is=tanK esionf(xa(tnon1-t)r)ivial S periodi orbit for the non-linear DDE: − for D K = 1.6 . We show that the equations on the Fourier equations have . h a solution by omputing the lo al Brower degree. This degree an t a be omputed by using a homotopy whi h validity an be he ked by m he king a (cid:28)nite number of inequalities. Che king these inequalities is [ done by a omputer program. 1 v 5 1 Introdu tion 6 2 1 We will show that the equation: 0 7 x′(t) = Ksin(x(t 1)) 0 − − (1) / h K = 1.6 1 t has a periodi solution for . By a solution we mean a C fun tion a m that satis(cid:28)es the equation. π < K < 5.1 v: Numeri alsimulationssugges0ts that for 2 there isa attra ting periodi orbitos illatingaround . Aninformalargument fortheexisten e of i X su h an orbit also omes from the analysis of eigenvalues of the linearization K = 1.6 r a [Wis hert et al 94℄. We will prove rigorously that for this orbit exists. In the remainder of the introdu tion we brie(cid:29)y outline our method. We will use the Fourier oe(cid:30) ients of the periodi orbit. First we res ale the 2π x˜(t) = x t τ time to obtain a period. We make a substitution: τ where is τ 2π a parameter. If is equal to T (where T is the period of the s(cid:0)ol(cid:1)ution in the 2π original equation) we will have a -periodi solution of the new equation: 1 1 t K t x˜′(t) = x′ = sin x 1 = τ τ − τ τ − (cid:18) (cid:19) (cid:18) (cid:18) (cid:19)(cid:19) K t τ K = sin x − = sin(x˜(t τ)) − τ τ − τ − (cid:18) (cid:18) (cid:19)(cid:19) x˜ x By renaming to we obtain: K x′(t) = sin(x(t τ)) − τ − (2) τ We will prove for this equation that there exist a from a small interval 2π su h there exist a -periodi orbit in a small neighborhood of a spe i(cid:28)ed fun tion. Note that we don't obtain the exa t value of the period (even if 4 τ = π τ numeri al solution suggests it is , i.e. 2) but treat as a variable. Toprovetheexisten eoftheorbitwewillusethemethodofself- onsistent bounds that was introdu ed in the ontext of Kuramoto-Shivashinsky PDEs in [Zgli zy«ski 01℄, [Zgli zy«ski 04℄. When applied to the boundary value problem for ODEs or DDEs this method is similar to the Cesari method introdu ed in [Cesari 64℄ but doesn't require one of the onditions (cid:21) see Se tion 2.4 in [Zgli zy«ski 01℄ for a omparison. Below we brie(cid:29)y des ribe the method. We will derive from (2) the equation on Fourier oe(cid:30) ients. Let's (cid:28)rst write (2) with a Taylor expansion instead of sinus: K ∞ ( 1)k x′(t) = − [x(t τ)]2k+1 − τ (2k +1)! − n=0 X The equations on the Fourier oe(cid:30) ients will look similar: K ∞ ( 1)k n Z : inc = − c∗(2k+1) e−inτ ∀ ∈ n − τ (2k +1)! n k=0 X (cid:0) (cid:1) (c∗(2k+1)) c 2k +1 n where means onvoluting the sequen e with itself times n and then taking the -th oe(cid:30) ient. The operation of onvolution and this notation is introdu ed in details in se tion 2. We will show that su h a fun tion has a non-trivial zero: ∞ ( 1)k ∞ F(τ,c) = inτeinτc +K − c∗(2k+1) n (2k +1)! n ( ) Xk=0 (cid:0) (cid:1) n=−∞ Where the domain is: 2 β X := x : Z C n Z : x x = x β → ∀ ∈ | n| ≤ ( n +1)2 and n −n (cid:26) (cid:12) | | (cid:27) (cid:12) (cid:12) β > 0 X β (cid:12) forsome . On we onsidertheprodu ttopology(whi h isequivalent to omponent-wise onvergen e). Itturnsoutthatonsu hadomainthesums F F c in the de(cid:28)nition of are onvergent, is ontinuous and ea h sequen e ∈ X F(c) = 0 β orresponds to a real-valued ontinuous fun tion. Moreover if 1 then the fun tion is C . We willsear h fora zero intheneighborhoodof an approximatedsolution cˆ obtained from numeri al simulations. We will denote by this approxima- n n 5 tion. For ≤ ≤ it is equal to: n cˆ n 0 0 1 0.1521000000 0.1163508047i − − 2 0 3 0.0001123121 0.0002746107i − 4 0 5 0.0000008173 0.0000001014i − − n > 5 cˆ n < 0 cˆ = cˆ τ n n −n For the is zero, for we have . The in the τˆ = 1.570796 approximatioln isN: . P Q l l For ea h ∈ let us de(cid:28)ne the Galerkin proje tion and immersion : P : CZ c (c ,...,c ) R Cl l 0 l ∋ → ∈ × Q : R Cl (c ,...,c ) (...,0,0,c ,...,c ,...,c ,0,0,...) CZ l 0 l −l 0 l × ∋ → ∈ Let's note that we need only the non-negative terms in the (cid:28)nite spa e c = c 0 −0 as the necgativRe terms an be obtained by X onjugation. Also as so 0 β we have ∈ . From the ompa tness of it will be easy to show that: β > 0 l > 0 τ,τ R l > l 0 0 Lemma. 15 Let , , ∈ be (cid:28)xed. If for ea h there cl X τ [τ,τ] P F(τ ,cl) = 0 β l l l is a ∈ and ∈ su h that then there exist a (c0,τ ) X [τ,τ] F(τ ,c0) = 0 0 β 0 ∈ × su h that . cl D c0 D Moreover if all the are in a losed set then ∈ . F Thus it's enough that there is a zero for every Galerkin proje tion of : F˜ : R R Cl (τ,c) P F(τ,Q(c)) R Cl l l l × × ∋ → ∈ × (cid:0) (cid:1) This will allow us to use a (cid:28)nite-dimensional topologi al method to show F 2l + 2 a zero of . Let's note that the real dimension of the domain is 3 2l + 1 while of the image is so if there is a zero then one an expe t a 1- x( ) dimensionalmanifold of zeros. This manifold an be ea˜sily identi(cid:28)ed (cid:21) if · x( +φ) F (τ,c ,c ,...,c ) = 0 l 0 1 l is a soF˜lu(tτi,ocn,tehieφnc ,..·.,eilφcis)a=lso.0This means that if l 0 1 l then what an be easy he ked. To use the topologi al method we wacnt tocˆh+avRe the zero isolated so we will limit the 1 1 domain (cid:21) we assume that ∈ . Of ourFse (cid:28)nding a zero in aFl˜imited l l domain implies a zero of the full system. By we will denote the with the smaller domain. F l The before-mentioned method to prove the existen e of a zero of is the lo al Brouwer degree (introdu ed e.g. in [Smoller 83℄). Let's denote by deg(F ,U,x) x U l the degree of on . It is known that if the degree is non-zero y U : f(y) = x cˆ U x = 0 then ∃ ∈ . We will use a neighborhood of as and . To ompute the degree we will use the homotopy invarian e of the lo al H F l l Brouwer degree. As our homotopy we will use a linear deformation of G F l l into a fun tion that ontains the most important terms of (that is not F l stri tly a linearization of but it is lose to): H (h,τ,c) = hF (τ,c)+(1 h)G (τ,c) l l l − G l The degree of will be easy to show that it is non-zero. What we will 0 / H ([0;1];∂U) l need toshow isthat ∈ . To show that it'senough toshow that G F l l the terms in dominates the (mainly non-linear) terms that are in but G G F G l l l l not (cid:21) that | | ≥ | − |. That part of the proof is omputer-assisted (cid:21) the proofs of the estimates are in this paper but omputing the exa t values and he king that the inequalitiesholds isdone by a omputer programusing the CAPD pa kage for rigorous interval arithmeti s. 1.1 The program This program is written in C++ and an be downloaded from http://www.im.uj.edu.pl/MikolajZalewski/dl/delay-sin.tgz . The rounding- mode hanging ode required by the interval arithmeti is system-dependent and has been he ked to work on PCs (both 32-bit and 64-bit) on both Windows ( ompiled with ygwin) and Linux ( ompiled with g ). It should also work on SPARC and Ma OS X although that has not been tested. Using other CPUs or ompilers might require modi(cid:28) ations to the rounding ode. 4 2 Fourier oe(cid:30) ients x ∞ y ∞ We willuse the followingnotation: if { n}n=−∞ and { n}n=−∞ are sequen es x y with omplex values then by ∗ we will denote the onvolution of the sequen es: ∞ ∞ x y := x y k n−k ∗ ( ) kX=−∞ n=−∞ It is well known that if the sum onverges the operation of onvolution is (...) n n asso iative. We will also use(xtheyn)ot=ation∞ xfoyr the -th oe(cid:30) ient of the sequen e in bra kets (cid:21) e.g. ∗ n k=−∞ k n−k. Also: P x∗k := x x k 1 ∗···∗ (for ≥ ) k times | {z 1} n = 0 (x∗0) := if n 0 n = 0 (cid:26) if 6 Of ourse the sum in the de(cid:28)nition of the onvolution may be not on- verging so we will limit our attention to a domain where the sum will be always onvergent. The following lemma holds: x y α 2,β ,β > 0 : n : x 1 2 n Lemma 1. If and is su h that ∃ ≥ ∀ | | ≤ β1 , y β2 (x y) n (x y) (|n|+1)α | n| ≤ (|n|+1)α, then ∗ n is onvergent for ea h and | ∗ n| ≤ C β1β2 C = 2(2α+1) (|n|+1)α where α−1 n 0 (x y) n Proof: Let's assume ≥ and let's estimate | ∗ |: ∞ ∞ n−1 ∞ x y x y + x y + x y k n−k −k n+k k n−k n+k −k ≤ (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)kX=−∞ (cid:12) (cid:12)Xk=0 (cid:12) (cid:12)Xk=1 (cid:12) (cid:12)Xk=0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) n−1x(cid:12) y (cid:12) β β(cid:12) (cid:12)n−1 1 (cid:12) 1 (cid:12) (cid:12) k=1 k n−k ≤ 1 2 k=1 (k+1)α(n−k+1)α 2β β 1 1 (cid:12)(cid:12)P (cid:12)(cid:12) ≤ 2β1β2P 1≤k≤n2 (k+11)α(n−k1+1)α ≤ 2β11β222αP1≤k≤n2 (k+1)1α((n/2)+1)α ≤ 2(βn1+β222)ααP 1≤k≤n2 1(k+1)α ≤ (n+2)α Pk≥1 (k+1)α ∞ x y β β P∞ 1 1 | k=0 −k n+k| ≤ 1 2 k=0 (k+1)α(n+k)α+1 β1β2 1 P ≤ (n+1)αP k≥0 (k+1)α P 5 Analogi ally: ∞ β β 1 1 2 x y (cid:12) n+k −k(cid:12) ≤ (n+1)α (k +1)α (cid:12)Xk=0 (cid:12) Xk≥0 (cid:12) (cid:12) (cid:12) (cid:12) ∞ (cid:12) 1 (cid:12) The sums k=k0 kα+1 an be estimated by integrals: P∞ 1 ∞ 1 α 1+ dx = (k +1)α ≤ (x+1)α α 1 k=0 Z0 − X ∞ 1 1 ∞ 1 α+1 + dx = (k +1)α ≤ 2α (x+1)α 2α(α 1) k=1 Z1 − X From that we obtain: ∞ β β α+1 α β β 2(2α+1) x y 1 2 2α+1 +2 1 2 k n−k ≤ (n+1)α 2α(α 1) α 1 ≤ (n+1)α α 1 (cid:12) (cid:12) (cid:12)kX=−∞ (cid:12) (cid:20) − − (cid:21) − (cid:12) (cid:12) (cid:12) (cid:12) n < 0 (cid:12) (cid:12) The result for an be obtained by analogous estimations or by x˜ y˜ x˜ := x y˜ := y n −n n −n taking a sequen es , : , and applying for them the n > 0 result for . α = 2 α = 2 With one ex eption we will use this lemma for . For we have C = 10 . x α 2,β > 0 : n : x β Observation 1. If is su h that ∃ ≥ ∀ | n| ≤ (|n|+1)α then (x∗k) Ck−1 βk C = 2(2α+1) n ≤ (|n|+1)α where α−1 (cid:12) (cid:12) x y x = x y = y (x y) = (cid:12) (cid:12) −n n −n n −n Lemma 2. If and are su h that , then ∗ (x y) n ∗ x X y X x y X Thus we have that if ∈ β1 and ∈ β2 then ∗ ∈ Cβ1β2 (where X C β was de(cid:28)ned in the introdu tion and is from Lemma 1). It will be also X β useful to de(cid:28)ne a set of sequen es from any : X := X β β>0 [ X We will limit ourselves to the sequen es in . For them we have: c X ∞ c eint Lemma 3. Let ∈ . Then n=−∞ n onverges to a real-valued on- tinuous fun tion P 6 N c eint cPro=of:c Thecfuenin tti+oncs e−n=in−tN nR are ontinuous and real-valued n −n n −n as∞ c eint ⇒ ∞ Pβ < ∈ . They uniformly onvergent as n=−∞| n | ≤ n=−∞ (|n|+1)2 ∞. Thus the limit is also real-valued aPnd ontinuous. P c X 1 Let's note that ∈ doesn't guarantee that the fun tion is C : We use the onvolution be ause of this well known fa t: c X x(t) d X Lemma 4. If ∈ are the Fourier oe(cid:30) ients of , ∈ are the y(t) x(t) y(t) c d oe(cid:30) ients of then the Fourier oe(cid:30) ients of · are ∗ . As a xn(t) c∗n onsequen e the oe(cid:30) ients of are . Now we an write the equation (2) on the Fourier oe(cid:30) ients. τ x(t) : R R 2π Theorem 1. Let be (cid:28)xed and → be a -periodi fun tion with c X the Fourier oe(cid:30) ients ∈ . Then: n Z (i) for ea h ∈ the sum on the right-hand side of the following equation onverges: K ∞ ( 1)k inc = − c∗(2k+1) e−inτ n − τ (2k +1)! n (3) k=0 X (cid:0) (cid:1) x(t) 2π c (ii) is a -periodi solution of (2) ⇔ satis(cid:28)es the equations (3). To prove the theorem we will need some lemmas. As it has been already c X x(t) 1 c mentioned that ∈ doesn't imply that is C . However if is the solution of equation (3) then we have the following lemma that will allow us x(t) 1 x(t) ∞ to show that is C ( is even C ): c β > 0,α 2 n : Lcemma β5. If satiβs(cid:28)′e:s enqu:action (3) aβn′ d ≥ are su h that ∀ | n| ≤ (|n|+1)α then ∃ ∀ | n| ≤ (|n|+1)α+1 C := 2(2α+1) Proof: Let α−1 . We have that: K ∞ (−1)k c∗(2k+1) e−inτ K ∞ 1 c∗(2k+1) −τ k=0 (2k+1)! n ≤ τ k=0 (2k+1)!| n| (cid:12)(cid:12) P (cid:0) (cid:1) (cid:12)(cid:12) ≤ Kτ P∞k=0 (2k+11)!C(cid:0)2k(|βn2|+k+11)(cid:1)α (4) (cid:12) (cid:12) = K 1 sinh(Cβ) τ CP(|n|+1)α inc = n c n n We also have | | | || |. The two sides of the equation must be equal hen e we obtain: K 1 sinh(Cβ) n c τ C( n +1)α ≥ | || n| | | 7 n = 0 β′ = 2K sinh(Cβ) Thus for 6 the Cτ satis(cid:28)es the assertion. If it is not n = 0 β′ satis(cid:28)ed for we an in rease the . α In reasing the is important as we have: c c β Lemma 6. Let be a sequen e of omplex values satisfying | n| ≤ (|n|+1)3 β c = c c n −n for some and . Then the sequen e is a sequen e of Fourier 1 x(t) oe(cid:30) ients of a real-valued C fun tion . n c eikt n ikc eikt Proof: The sequen es k=−n k and k=−n k are real-valued, the se ond is the derivativePof the (cid:28)rst one anPd are uniformly onvergent as n → ∞. Hen e both onverge tox( to)n=tinuo∞us func etiioktn and1 the se ond is the derivative of the (cid:28)rst one. Thus k=−∞ k is C . Proof of the Theorem 1: P x X Ad (i): The onvolutions are onvergent be ause ∈ . From the x X β equation (4) from the proof of Lemma 5 we have that if ∈ then ∞ (−1)k c∗(2k+1) e−inτ 1 sinh(Cβ) < k=0 (2k+1)! n ≤ C(|n|+1)2 ∞ (cid:12) (cid:12) inc ∞ P Ad(cid:12)(ii): (cid:0)Impli at(cid:1)ion ⇒:(cid:12)It's enough to show that { n}n=−∞ are the (cid:12) x′(t) (cid:12) K ∞ (−1)k c∗(2k+1) e−inτ Fourier oe(cid:30) ients of while −τ k=0 (2k+1)! n are the K sinx(t τ) Fourier oe(cid:30) ients of −τ − . P (cid:0) (cid:1) 2πx′(t)eiktdt The (cid:28)rst part an be obtained by integrating 0 by parts. K N (−1)k (x(t τ))2k+1 K sinx(t Asforthese ondwehavethat−τ k=0 (2k+1)!R − → −τ − τ) N x(t τ) d := c ea−sinτ ∞→ ∞. The Fourier oe(cid:30) Pientsx(otf τ)2−k+1 ared∗e(2qku+a1l) to { n }n=−∞. Hen e the oe(cid:30) ients of − are whi h is c∗(2k+1)e−inτ equal to . K N (−1)k (x(t τ))2k+1 Hen ewehavethattheFourier oe(cid:30) ientsof−τ k=0 (2k+1)! − ∞ K N (−1)k c∗(2k+1) e−inτ P are equal to −τ k=0 (2k+1)! n n=−∞. It has been shown n N o n P (cid:0) (cid:1) thKatsitnhxis(tsequτe)n e inK on∞verg(e−n1t)kasc∗(2k+→1) ∞e−tihnτus the -th oe(cid:30) ient of −τ − is −τ k=0 (2k+1)! n . This ends the proof of this ase. P (cid:0) (cid:1) x(t) 1 Impli ation⇐: fromLemmas5and6we obtainthat isaC fun tion. K ∞ (−1)k c∗(2k+1) e−inτ We know that −τ k=0 (2k+1)! n are the Fourier oe(cid:30) ients of K sinx(t τ) inc x′(t) −τ − . TPhey are equ(cid:0)al to (cid:1)n (cid:21) the Fourier oe(cid:30) ients of . K sinx(t τ) x′(t) 2π So both −τ − and are ontinuous and -periodi fun tions with equal Fourier oe(cid:30) ients. Hen e the fun tions themselves are equal and equation (2) is satis(cid:28)ed. F : R X CZ CZ Let's de(cid:28)ne a fun tion × → (with the produ t topology on ) orresponding to the equation (3): 8 ∞ ( 1)k ∞ F(τ,c) := inτeinτc +K − c∗(2k+1) n (2k +1)! ( ) Xk=0 (cid:0) (cid:1) n=−∞ F(τ,c) = 0 τ,c Of ourse having is equivalent to the fa t that satis(cid:28)es F equation (3). In the rest of the paper we will show that has a nontrivial F(τ,c) = F(τ,c) n −n zero. Let's note that . F As we will use topologi al tools we will want to be ontinuous. First X let's note that the onvolution is not ontinuous on the whole (as written X above we use the produ t topology on ) but we have: X β Lemma 7. The operation of onvolution is ontinuous on ea h x0,y0 X δ β Proof: Let's (cid:28)x some ∈ . Let's (cid:28)x some and take some x,y X (x0,y0) x,y n N : β δ ∈ from a neighborhood of : are su h that ∀| | ≤ x (x0) , y (y0) < δ N n > N : n n n n δ δ | − | | − | where is large enough that for | | x,y,x0,y0 X x (x0) , y (y0) < δ β n n n n ∈ ⇒ | − | | − | . We have that: x0 y0 x y x0 (y0 y) + (x0 x) y ∗ − ∗ n ≤ ∗ − n | − ∗ n| (cid:12)(cid:0) (cid:1) (cid:12) (cid:12)(cid:0) (cid:1) (cid:12) (cid:0) (cid:1) (cid:12) (cid:12) (cid:12) (cid:12) ∞ ∞ 1 x0 (y0 y) x0 y0 y βδ ∗ − n ≤ j · n−j − n−j ≤ ( j +1)2 (cid:12)(cid:0) (cid:1) (cid:12) j=X−∞(cid:12)(cid:12)(cid:0) (cid:1) (cid:12)(cid:12) (cid:12)(cid:12)(cid:0) (cid:1) (cid:12)(cid:12) j=X−∞ | | (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) δ 0 ((x0 x) y) Thistendstozeroas → . Afterananalogousestimationfor| − ∗ n| we have that the onvolution is ontinuous. F X β Lemma 8. The fun tion is ontinuous on ea h . X β Proof: The onvolutions are ontinuous on ea h and the result of a onvolution lays in a Xβ′ for some β′ so K Nk=0 (2(−k+1)1k)! c∗(2k+1) n is ontin- N uous for ea h . From estimations as in eqPuation (4) w(cid:0)e have t(cid:1)hat for ea h N oe(cid:30) ientKthis∞seri(e−s1) konvce∗r(2gke+s1)uniformly as → ∞ hen e we obtain that the limit k=0 (2k+1)! n is ontinuous. inτeinτc F The termP n is(cid:0)also o(cid:1)ntinuous so is ontinuous. 3 Some estimates As mentioned in the introdu tion we will need some estimates to show that cˆ the inequality holds in the neighborhood of . We will use two kinds of sets: 9 cˆ+ X X β β2 that will be used to obtain (cid:28)ner estimates and β1 (where 1 will cˆ+X be large enough to ontain the whole set β2) for some more rough but simpler ones. cˆ In this se tion we will only assume of that almost all oe(cid:30) ients are Y cˆ l equal to zero. By we will denote the spa e of the possible values of (cid:21) the l,...,l set of sequen es su h that at most the elements − are non-zero: Y := c X : n : n > l c = 0 l n { ∈ ∀ | | ⇒ } First let's note two simple properties: c Y c∗k Y l kl Lemma 9. If ∈ then ∈ x,y X Lemma 10. If ∈ then k=n n (x+y)∗n = x∗k y∗(n−k) k ∗ k=0(cid:18) (cid:19) X K (x∗p) To estimate p! n (cid:21) an element of the sum in the equation (3) (cid:21) for x X c+X β β ∈ it's enough to use Lemma 1. However for the sets of the form we will use a more sophisti ated estimation: c Y p > 1 β > 0 x X l β Lemma 11. Let ∈ , , . Then for any ∈ : K K p−1 p lk βp−k (c+x)∗p c∗p + c∗k Cp−k−1 p! n ≤ p! | n | k j ( n j +1)2 (cid:12) (cid:12) k=0(cid:18) (cid:19)j=−lk | − | ! (cid:12) (cid:12) X X (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) C = 10(cid:12) Where Proof: From Lemmas 1 and 10 we have: p K(x+c)∗p K p c∗k x∗(p−k) p! n ≤ p! k=0 k ∗ n (cid:18) (cid:19) (cid:12)(cid:12) (cid:12)(cid:12) K Pp p (cid:12)(cid:12)(cid:0) ∞ c∗k (cid:1)x∗(cid:12)(cid:12)(p−k) (cid:12) (cid:12) ≤ p! k=0 k j=−∞ j n−j (cid:18) (cid:19) (cid:12) (cid:12) K Pc∗p + p−P1 p (cid:12)(cid:12) ∞(cid:12)(cid:12)(cid:12) c∗k(cid:12)Cp−k−1 βp−k ≤ p! | n | k=0 k j=(cid:12)−∞ j (cid:12) (|n−j|+1)2 (cid:18) (cid:18) (cid:19) (cid:19) P P (cid:12) (cid:12) c Y c∗k = 0 j > kl (cid:12) (cid:12) We have ∈ l so j for what ends the proof. Of oursewe anusethepreviouslemmaonlyfora(cid:28)nitenumberofterms. To estimate the tail we will use a weaker estimationby using a neighborhood of the se ond type, applying Lemma 1 and summing the geometri sequen e: 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.