ebook img

Computer arithmetic lectures PDF

343 Pages·2006·2.73 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer arithmetic lectures

Lecture 1 Numbers and Arithmetic FrontP ageC omputerA rithmetic • March 1994 – grubhcny Lt anaicitamehta m,yleci NsamohT ainigriV ,egelloC – rehto hctam ton did rossecorp muitneP gnitupmoc ni srossecorp )2+p( /p+1/1 • Octobe1r9 94 – .tlua ft asa wmuitne Ptah tdecnivnoC – srehcraese rreht ohti wstluse rdegnahcxE – tenretnI no stluser detsoP 1 The Diagnosis • Tim Coe , engineer at Vitesse Semiconductor – noisivid tniop-gnitaolf s’muitneP fo ledom a dliub mhtirogla TRS 4-xidar no desab erawdrah – :melb odrepsongaid – 44 028 333.1 = 727,541,3 / 538,591,4 – ,tub 333.1 = saw ti ,muitneP no 60 937 – )stib 41 ot ylno etarucca( Intel’s Response • Dismissed severity of problem • Admitted to a “subtle flaw” • Claimed probability of 1 in 9 billion (once every 27,000 yrs .) for average user • Publisheda w hitep aperd escribingp roblem. • Announced replacement policy: – remotsu cn odesa btra pevitcefe df otnemecalper snoitacilppa rieht wohs ot dah sremotsuc ,deen .citemhtira tcerroc deriuqer 2 Customer Response • Heavy criticism from customers – sserp dab fo stoL – msicitirc enil-nO • Intel revised its policy: no-questions-askerde placemenpto licy • First instance of arithmetic becoming front- pagen ews Moral • Glaring software faults have become routine(, ref . Microsoft) but … • Hardware bugs are rare, untolerated ,dna newsworthy • Computer arithmetic is important 3 What is computer arithmetic? • Majofri elidcn o mputearr chitecture • Implementation of arithmetic functions – .erawmrif ro erawtfos rof smhtirogla citemhtirA – smhtirogla erawdraH – noitatupmo cro fstiucri cdeeps-hgiH Applications of Computer Arithmetic • Design of top-of-the-line CPU’s • High-performancaer ithmeticci rcuits. • Designs for embedded application-specific circuits. • Arithmetic algorithms for software. • Understand what went wrong in the Pentium ... 4 Numbers and their Encodings • Number representations have advanced in parallelw itht hee volutiono fl anguage – senot sdn askcit sf oesU – .0 1r o5f ospuor gotn iskcit sf ognipuorG – smrof cilobmyS RoNmuamne Sryaslt em • 1, 5, 10, 50, 100, 1000 = I, V, X, L, D, C, M • Problems – srebmun egral gnitneserper rof elbatius ton – hti wcitemhtir ao do ttluciffid 5 Positional Number Systems • First used by Chinese • Valueo fas ymbold ependso nw herei ti s. • Ex: 222 = 200 + 20 + 2 – eulav tnereffid a sah ”2“ lobmys hcaE Fixed-RaSdyisxt em • Eachp ositioni sw ortha c onstantm ultiple of the position to the right: DDD L D (cid:190) R(cid:190) semi t (cid:190) reaghrtal (cid:190) (cid:190) (cid:190) n fi D (cid:190) R(cid:190) semi t (cid:190) reaghrtal (cid:190) (cid:190) (cid:190) n fi D (cid:190) (cid:190) Lfi • binar=P y o sitional,F ixedR adixR =2 • decimal= P ositional,F ixedR adixR =10 6 Mixed-RSaydsitxe m • Radix vector gives weights • Ex: time intervals: syad : hours : setunim : seconds syad (cid:190) 24(cid:190) · fi hours (cid:190) 60(cid:190) · fi setunim (cid:190) 60(cid:190) · fi seconds [ ] R = 0 24 60 60 Digital Systems • Numbers are encoded using 0’s and 1’s • Supposes ystemh as4 b its (cid:222) 16 codes • Youa ref reet oa ssignt he1 6c odest o numbers as you please. Examples: – yraniB (cid:222) ]51,0[ – edutingam-dengiS (cid:222) eciwt dedocne 0 , ]7,7-[ – 2 ’ tnemelpmoc s (cid:222) ]7,8-[ – tniop dexif 1.3 (cid:222) ]5 ., 70[ 7 Fixed-RadiPxo sitioNnu mber Systems k - 1 (cid:229) ( x x x • x x x ) = x r i L L k - 1 k - 2 0 - 1 - 2 - l i i =- l (Errpooanr8g )e r si eht radix x si a digit { } 0 ,1 , , r - 1 si eht ticilpmi digit tes L k .l stigid : k stigid rofeht whole trap l stigid rofeht lanoitcarf trap • si eht radix - point Example: Balanced Ternary System r = 3 { } digit set = 1 , 0 , 1 1 = - 1 , 1 1 , 1 , 0 , 1 , 1 1 , 10 , 11 , 1 1 1 , 1 1 0 , L L 8 Example: Redundant Signed-Digit Radix-4 r = 4 { } tigid tes = 2 , 1 , 0 , 1 , 2 5 =11 decimal 6 =12 = 2 2 tnadnuder( ) decimal Other Fancy Radices • Negativrea disxy stems • Fractionarla disxy stems • Irrationarla disxy stems • Complex radix systems – koo beh tn iselpmax eees 9 How many digits are needed? To represent the natural srebmun in [0, max ] in radix r wit h digit tes = [ 0, r- 1 ] requires k digits : x x x L k - 1 k - 2 0 max = r k - 1 k = º log max ß +1 = Ø log ( max +1 ) ø r r Fixed-point Numbers Radix r and digit set [ 0, r- 1 ] k whole and l fractional digits r - l = ulp unit in the least (significa nt) position max = r k - r - l elpmaxE : Binary max = 1111 .11 = 2 4 - 2 - 2 =15 .75 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.