de Gruyter Studies in Mathematics 33 Editors: Carsten Carstensen · Niels Jacob de Gruyter Studies in Mathematics 1 Riemannian Geometry, 2nd rev. ed., Wilhelm P.A.Klingenberg 2 Semimartingales, Michel Me´tivier 3 HolomorphicFunctionsofSeveralVariables,LudgerKaupandBurchardKaup 4 Spaces of Measures, Corneliu Constantinescu 5 Knots, 2nd rev. and ext. ed., Gerhard Burde and Heiner Zieschang 6 Ergodic Theorems, Ulrich Krengel 7 Mathematical Theory of Statistics, Helmut Strasser 8 Transformation Groups, Tammo tom Dieck 9 Gibbs Measures and Phase Transitions, Hans-Otto Georgii 10 Analyticity in Infinite Dimensional Spaces, Michel Herve´ 11 Elementary Geometry in Hyperbolic Space, Werner Fenchel 12 Transcendental Numbers, Andrei B. Shidlovskii 13 Ordinary Differential Equations, Herbert Amann 14 Dirichlet Forms and Analysis on Wiener Space, Nicolas Bouleau and Francis Hirsch 15 Nevanlinna Theory and Complex Differential Equations, Ilpo Laine 16 Rational Iteration, Norbert Steinmetz 17 Korovkin-type Approximation Theory and its Applications, Francesco Altomare and Michele Campiti 18 Quantum Invariants of Knots and 3-Manifolds, Vladimir G.Turaev 19 Dirichlet Forms and Symmetric Markov Processes, Masatoshi Fukushima, Yoichi Oshima and Masayoshi Takeda 20 Harmonic Analysis of Probability Measures on Hypergroups, Walter R.Bloom and Herbert Heyer 21 PotentialTheoryonInfinite-DimensionalAbelianGroups,AlexanderBendikov 22 Methods of Noncommutative Analysis, Vladimir E. Nazaikinskii, Victor E. Shatalov and Boris Yu. Sternin 23 Probability Theory, Heinz Bauer 24 Variational Methods for Potential Operator Equations, Jan Chabrowski 25 The Structure of Compact Groups, 2nd rev. and aug. ed., Karl H.Hofmann and Sidney A.Morris 26 Measure and Integration Theory, Heinz Bauer 27 Stochastic Finance, 2nd rev. and ext. ed., Hans Föllmer and Alexander Schied 28 Painleve´ Differential Equations in the Complex Plane, Valerii I.Gromak, Ilpo Laine and Shun Shimomura 29 Discontinuous Groups of Isometries in the Hyperbolic Plane, Werner Fenchel and Jakob Nielsen 30 The Reidemeister Torsion of 3-Manifolds, Liviu I. Nicolaescu 31 Elliptic Curves, Susanne Schmitt and Horst G. Zimmer 32 Circle-valued Morse Theory, Andrei V. Pajitnov Ulrich Kulisch Computer Arithmetic and Validity Theory, Implementation, and Applications ≥ Walter de Gruyter Berlin · New York Author Ulrich Kulisch Institute for Applied and Numerical Mathematics Universität Karlsruhe Englerstr. 2 76128 Karlsruhe Germany E-mail: [email protected] Series Editors Carsten Carstensen Niels Jacob Department of Mathematics Department of Mathematics Humboldt University of Berlin Swansea University Unter den Linden 6 Singleton Park 10099 Berlin Swansea SA2 8PP, Wales Germany United Kingdom E-Mail: [email protected] E-Mail: [email protected] Mathematics Subject Classification 2000: 65-04, 65Gxx Keywords:Computerarithmetic,intervalarithmetic,floating-pointarithmetic,verifiedcom- puting, interval Newton method (cid:2)(cid:2) Printedonacid-freepaperwhichfallswithintheguidelinesoftheANSI toensurepermanenceanddurability. BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableintheInternetathttp://dnb.d-nb.de. ISBN 978-3-11-020318-9 (cid:2)Copyright2008byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. Allrightsreserved,includingthoseoftranslationintoforeignlanguages.Nopartofthisbookmaybe reproduced in any form or by any means, electronic or mechanical, including photocopy, recording, oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. PrintedinGermany. Coverdesign:MartinZech,Bremen. Typesetusingtheauthor’sLAT Xfiles:KayDimler,Müncheberg. E Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. ThisbookisdedicatedtomywifeUrsula andtomyfamily, toBrigitteandJoachim, JohannaandBenedikt, toAngelikaandRolf, FlorianandNiclas, to allformerandpresentcolleaguesofmyinstitute, andtomystudents. LassetunsamAlten, soesgutist,halten unddannaufdemaltenGrund NeuesschaffenStundumStund. HouseinscriptionintheBlackForest. Contents Preface xi Introduction 1 I TheoryofComputerArithmetic 11 1 FirstConcepts 12 1.1 OrderedSets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2 CompleteLatticesandCompleteSubnets . . . . . . . . . . . . . . . 17 1.3 ScreensandRoundings . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4 ArithmeticOperationsandRoundings . . . . . . . . . . . . . . . . . 34 2 RingoidsandVectoids 42 2.1 Ringoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.2 Vectoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 DefinitionofComputerArithmetic 60 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3 TheTraditionalDefinitionofComputerArithmetic . . . . . . . . . . 67 3.4 DefinitionofComputerArithmeticbySemimorphisms . . . . . . . . 69 3.5 ARemarkAboutRoundings . . . . . . . . . . . . . . . . . . . . . . 75 3.6 UniquenessoftheMinusOperator . . . . . . . . . . . . . . . . . . . 77 3.7 RoundingNearZero . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 IntervalArithmetic 84 4.1 IntervalSetsandArithmetic . . . . . . . . . . . . . . . . . . . . . . 84 4.2 IntervalArithmeticOveraLinearlyOrderedSet . . . . . . . . . . . . 94 4.3 IntervalMatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.4 IntervalVectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.5 IntervalArithmeticonaScreen . . . . . . . . . . . . . . . . . . . . . 106 4.6 IntervalMatricesandIntervalVectorsonaScreen . . . . . . . . . . . 114 4.7 ComplexIntervalArithmetic . . . . . . . . . . . . . . . . . . . . . . 122 4.8 ComplexIntervalMatricesandIntervalVectors . . . . . . . . . . . . 129 4.9 ExtendedIntervalArithmetic . . . . . . . . . . . . . . . . . . . . . . 134 4.10 Exception-freeArithmeticforExtendedIntervals . . . . . . . . . . . 140 viii Contents 4.11 ExtendedIntervalArithmeticontheComputer . . . . . . . . . . . . . 145 4.12 ImplementationofExtendedIntervalArithmetic . . . . . . . . . . . . 149 4.13 ComparisonRelationsandLatticeOperations . . . . . . . . . . . . . 150 4.14 AlgorithmicImplementationofIntervalMultiplicationandDivision . 151 II ImplementationofArithmeticonComputers 153 5 Floating-PointArithmetic 154 5.1 DefinitionandPropertiesoftheRealNumbers . . . . . . . . . . . . . 154 5.2 Floating-PointNumbersandRoundings . . . . . . . . . . . . . . . . 160 5.3 Floating-PointOperations. . . . . . . . . . . . . . . . . . . . . . . . 168 5.4 SubnormalFloating-PointNumbers . . . . . . . . . . . . . . . . . . 177 5.5 OntheIEEEFloating-PointArithmeticStandard . . . . . . . . . . . 178 6 ImplementationofFloating-PointArithmeticonaComputer 187 6.1 ABriefReviewontheRealizationofIntegerArithmetic . . . . . . . 188 6.2 IntroductoryRemarksAbouttheLevel1Operations . . . . . . . . . . 196 6.3 AdditionandSubtraction . . . . . . . . . . . . . . . . . . . . . . . . 201 6.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 6.5 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.6 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.7 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 6.8 AUniversalRoundingUnit . . . . . . . . . . . . . . . . . . . . . . . 211 6.9 OverflowandUnderflowTreatment . . . . . . . . . . . . . . . . . . 213 6.10 AlgorithmsUsingtheShortAccumulator . . . . . . . . . . . . . . . 215 6.11 TheLevel2Operations . . . . . . . . . . . . . . . . . . . . . . . . . 222 7 HardwareSupportforIntervalArithmetic 233 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 7.2 AnInstructionSetforIntervalArithmetic . . . . . . . . . . . . . . . 234 7.2.1 AlgebraicOperations . . . . . . . . . . . . . . . . . . . . . . 234 7.2.2 CommentsontheAlgebraicOperations . . . . . . . . . . . . 235 7.2.3 ComparisonsandLatticeOperations . . . . . . . . . . . . . . 236 7.2.4 CommentsonComparisonsandLatticeOperations . . . . . . 236 7.3 GeneralCircuitryforIntervalOperationsandComparisons . . . . . . 236 7.3.1 AlgebraicOperations . . . . . . . . . . . . . . . . . . . . . . 236 7.3.2 ComparisonsandResult-Selection . . . . . . . . . . . . . . . 240 7.3.3 AlternativeCircuitryforIntervalOperationsandComparisons 241 7.3.4 HardwareSupportforIntervalArithmeticonX86-Processors 243 7.3.5 AccurateEvaluationofIntervalScalarProducts . . . . . . . . 244 Contents ix 8 ScalarProductsandCompleteArithmetic 245 8.1 IntroductionandMotivation . . . . . . . . . . . . . . . . . . . . . . 246 8.2 HistoricRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 8.3 TheUbiquityoftheScalarProductinNumericalAnalysis . . . . . . 252 8.4 ImplementationPrinciples . . . . . . . . . . . . . . . . . . . . . . . 256 8.4.1 LongAdderandLongShift . . . . . . . . . . . . . . . . . . 257 8.4.2 ShortAdderwithLocalMemoryontheArithmeticUnit . . . 258 8.4.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 8.4.4 FastCarryResolution . . . . . . . . . . . . . . . . . . . . . 261 8.5 ScalarProductComputationUnits(SPUs) . . . . . . . . . . . . . . . 263 8.5.1 SPUforComputerswitha32BitDataBus . . . . . . . . . . 263 8.5.2 ACoprocessorChipfortheExactScalarProduct . . . . . . . 266 8.5.3 SPUforComputerswitha64BitDataBus . . . . . . . . . . 270 8.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 8.6.1 Rounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 8.6.2 HowMuchLocalMemoryShouldbeProvidedonanSPU? . 274 8.7 TheDataFormatCompleteandCompleteArithmetic . . . . . . . . . 275 8.7.1 LowLevelInstructionsforCompleteArithmetic . . . . . . . 277 8.7.2 CompleteArithmeticinHighLevelProgrammingLanguages 279 8.8 TopSpeedScalarProductUnits . . . . . . . . . . . . . . . . . . . . 282 8.8.1 SPUwithLongAdderfor64BitDataWord . . . . . . . . . . 282 8.8.2 SPUwithLongAdderfor32BitDataWord . . . . . . . . . . 287 8.8.3 AFPGACoprocessorfortheExactScalarProduct . . . . . . 290 8.8.4 SPUwithShortAdderandCompleteRegister . . . . . . . . . 291 8.8.5 Carry-FreeAccumulationofProductsinRedundantArithmetic297 8.9 HardwareCompleteRegisterWindow . . . . . . . . . . . . . . . . . 297 III Principles ofVerified Computing 301 9 SampleApplications 302 9.1 BasicPropertiesofIntervalMathematics . . . . . . . . . . . . . . . . 304 9.1.1 IntervalArithmetic,aPowerfulCalculustoDealwith Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 304 9.1.2 IntervalArithmeticasExecutableSetOperations . . . . . . . 305 9.1.3 EnclosingtheRangeofFunctionValues . . . . . . . . . . . . 311 9.1.4 NonzeroPropertyofaFunction,GlobalOptimization. . . . . 314 9.2 DifferentiationArithmetic,EnclosuresofDerivatives . . . . . . . . . 316 9.3 TheIntervalNewtonMethod . . . . . . . . . . . . . . . . . . . . . . 324 9.4 TheExtendedIntervalNewtonMethod. . . . . . . . . . . . . . . . . 327 9.5 VerifiedSolutionofSystemsofLinearEquations . . . . . . . . . . . 329 9.6 AccurateEvaluationofArithmeticExpressions . . . . . . . . . . . . 336
Description: