Computer Algebra and Algebraic Programming Computer Algebra and Algebraic Programming Robert Smith Quad’s Printing — St. Paul Copyright ©2011 by Robert Smith. All rights reserved. This is a work-in-progress. This copy was generated on February 23, 2011. If you happen to find an error, please send an email with relevant details and corrections to the author at [email protected]. Nopartofthisbookmaybereproducedortransferredinanyformorbyanymeans, graphic, electronic, or mechanical, including photocopying, recording, taping, or by any information storage retrieval system, without either thewritten permission of Robert Smith (“theAuthor”), or thiscopyright notice fully in-tact. Reproduction or transfer for profit or for any commercial purposeis strictly prohibited. Information providedin thisbook areprovided“ASIS”and“WITHALLFAULTS” without any warranty, express or implied. The Authormakes reasonable effort to includeaccurate and up-to-dateinformation; theAuthordoes not, however, make any representations as to its accuracy or completeness. The useof this book is at one’s own risk. TheAuthordoes not warrant or guarantee 1. theaccuracy, adequacy,quality,currentness, validity,completeness, or suitability of any information for any purpose; or 2. that defects in this book will be corrected. Contents Contents v I The Algebraic Paradigm 1 1 The Symbolic and Algebraic Paradigm 3 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Structure of Algebraic Programs 7 2.1 Symbols, Variables, and Values . . . . . . . . . . . . . . . . . . 7 2.2 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Mappings and Constructions . . . . . . . . . . . . . . . . . . . 8 2.4 Substitution Semantics . . . . . . . . . . . . . . . . . . . . . . . 8 3 Values and Types 11 3.1 A Discourse on Types . . . . . . . . . . . . . . . . . . . . . . . 11 II Computer Algebra Fundamentals 15 4 Relations, Identities, Forms 17 4.1 Relationships Between Values . . . . . . . . . . . . . . . . . . . 17 4.2 Equality in Computer Algebra . . . . . . . . . . . . . . . . . . 18 4.3 Canonical Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4 Normal Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Arbitrary Precision Arithmetic 23 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Computer Representation . . . . . . . . . . . . . . . . . . . . . 24 5.3 High-PrecisionEvaluation of Hypergeometric Series . . . . . . 25 IIIAbstract Algebra 29 6 Basic Structures and Divisibility 31 vi Contents 6.1 Algebraic Structures . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 Divisibility and Factorization . . . . . . . . . . . . . . . . . . . 32 7 Polynomial, Rational, and Series Structures 37 7.1 Univariate Polynomial Domains . . . . . . . . . . . . . . . . . . 37 8 Field Extensions 39 8.1 Algebraic and Transcendental Extensions . . . . . . . . . . . . 40 IVPolynomials 43 9 Polynomial Algorithms 45 9.1 Sylvester Matrices and Resultants . . . . . . . . . . . . . . . . 45 9.2 Polynomial Roots and Algebraic Numbers . . . . . . . . . . . . 47 10 Algebra In the Reals 49 10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10.2 Real Closed Fields . . . . . . . . . . . . . . . . . . . . . . . . . 49 V Series 51 11 Hypergeometric Series 53 11.1 Hypergeometric Series and Functions . . . . . . . . . . . . . . . 53 11.2 Series as Hypergeometric Functions . . . . . . . . . . . . . . . . 55 11.3 Discrete Operators and The Summation Problem . . . . . . . . 55 11.4 Gosper’s Algorithm for Indefinite Summation . . . . . . . . . . 57 11.5 Zeilberger’s Algorithm for Definite Summation . . . . . . . . . 60 VIIntegration 63 12 Risch Integration 65 12.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 12.2 Risch Algorithm: Input . . . . . . . . . . . . . . . . . . . . . . 66 Appendix 71 A Function Tables 71 A.1 Elementary Functions . . . . . . . . . . . . . . . . . . . . . . . 71 A.2 Gamma and Friends . . . . . . . . . . . . . . . . . . . . . . . . 73 A.3 Hypergeometric Identities . . . . . . . . . . . . . . . . . . . . . 75 A.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 B Miscellaneous 77 Contents vii B.1 The Gudermannian Function . . . . . . . . . . . . . . . . . . . 77 B.2 The Γ-Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 B.3 The Lambert W-Function . . . . . . . . . . . . . . . . . . . . . 82 Bibliography 83 Index 85 Part I The Algebraic Paradigm
Description: