Graduate Theses and Dissertations Graduate College 2015 Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models Ashish Mukund Joshi Iowa State University Follow this and additional works at:http://lib.dr.iastate.edu/etd Part of theIndustrial Engineering Commons Recommended Citation Joshi, Ashish Mukund, "Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models" (2015).Graduate Theses and Dissertations.Paper 14844. This Dissertation is brought to you for free and open access by the Graduate College at Digital Repository @ Iowa State University. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Digital Repository @ Iowa State University. For more information, please [email protected]. Computer aided process planning for multi-axis CNC machining using feature free polygonal CAD models by Ashish Mukund Joshi A dissertation submitted to the graduate faculty in the partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Industrial Engineering Program of Study Committee: Matthew Frank, Major Professor Frank Peters Iris Rivero John Jackman James Oliver Iowa State University Ames, Iowa 2015 Copyright © Ashish Mukund Joshi, 2015. All rights reserved. ii TABLE OF CONTENTS ACKNOWLEDGEMENT .................................................................................................. vi ABSTRACT .................................................................................................................... vii CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Background ............................................................................................................ 1 1.1.1 Computer Aided Process Planning (CAPP) ...................................................... 1 1.1.2 CNC machining (milling) ................................................................................ 2 1.1.3 Multi-axis machining ...................................................................................... 3 1.2 Motivation ............................................................................................................... 5 1.2.1 Process planning for CNC machining ............................................................ 5 1.2.2 CAD formats .................................................................................................. 8 1.2.3 Application of CAPP for CNC machining...................................................... 11 1.3 Objective ........................................................................................................... 12 1.4 References ........................................................................................................ 13 CHAPTER 2.LITERATURE REVIEW ............................................................................ 14 2.1 Background ....................................................................................................... 14 2.2 Process Planning Using Various CAD Model Formats ..................................... 15 2.3 Motivation .......................................................................................................... 27 2.4 References ........................................................................................................ 28 CHAPTER 3.AUTOMATED SETUP PLANNING FOR FEATURE FREE MULTIPLE SURFACE PARTS ........................................................................................................ 35 3.1 INTRODUCTION ................................................................................................. 36 3.1.1 Single surface vs. Multiple Surface Parts (MSPs) ........................................... 37 3.1.2 Bone implants as Multiple Surface Parts (MSPs) ............................................ 38 3.1.3 Manufacturing using rapid CNC machining ..................................................... 39 3.1.4 Surface texture ................................................................................................ 40 3.1.5 Problem statement .......................................................................................... 41 3.2 Methods ............................................................................................................... 42 3.2.1 STL vs. PLY files ............................................................................................. 42 3.3 Process Planning For Calculating Surface Specific Orientations ......................... 43 3.3.1 Surface Visibility (SV) ..................................................................................... 45 3.3.2 Surface Reachability (SR) ............................................................................... 45 3.3.3 Normal deviation ( ) ..................................................................................... 46 ∆(cid:2) iii 3.3.4 Goodness measure for a set of setup orientation for a surface of primary interest ..................................................................................................................... 47 3.3.5 Tool Path Containment (TCO) ........................................................................ 48 3.3.6 Tool Path Crossover (TCR)............................................................................. 48 3.3.7 Tool Path Redundancy (TR) ........................................................................... 49 3.3.8 Multi-objective function using greedy heuristic ................................................ 50 3.3.9 Stochastic combinatorial optimization using Simulated Annealing (SA) .......... 51 3.4 Determining Surface Specific Setup Orientations Using SA ................................ 51 3.5 Setup Orientation Calculation Sequence ............................................................. 55 3.6 Machining Sequence ........................................................................................... 57 3.7 Implementation And Results ................................................................................ 58 3.8 Machining Trials ................................................................................................... 61 3.9 Conclusion ........................................................................................................... 62 3.10 Future work ........................................................................................................ 63 3.11 References ......................................................................................................... 64 3.11 Acknowledgements ............................................................................................ 64 CHAPTER 4. AUTOMATED SETUP PLANNING FOR DISCRETE 3-AXIS MACHINING OF FEATURE FREE POLYGONAL MODELS ........................................ 68 4.1 Introduction ....................................................................................................... 69 4.2 CAPP For 3-Axis Machining .............................................................................. 70 4.2.1 Setup orientations ........................................................................................ 72 4.2.2 Part non-visibility .......................................................................................... 72 4.2.3 Part non-machinability ................................................................................. 73 4.2.4 Part non-reachability/tool length ................................................................... 73 4.3 Literature Review .............................................................................................. 74 4.4 Manufacturing Using Rapid CNC Machining ..................................................... 75 4.5 Problem Statement ........................................................................................... 76 4.5.1 Multi-axes setups ......................................................................................... 76 4.5.2 Facet based analysis ................................................................................... 77 4.5.3 Meta-heuristics ............................................................................................. 77 4.5.4 Constrained optimization.............................................................................. 78 4.5.5 Parallel computing using GPU ..................................................................... 79 4.5.6 Chapter layout .............................................................................................. 79 4.6 CAD Input ......................................................................................................... 80 iv 4.7 Non-Visibility (NV), Non-Machinability (NM), Non-Reachability (NR) Of A STL Model.................................................................................................................. 81 4.7.1 Non-Visibility of a slice model ...................................................................... 81 4.7.2 Non-Machinability of slice model .................................................................. 82 4.7.3 Non-Reachability of slice model ................................................................... 83 4.7.4 Mapping results from slice model to STL model .......................................... 84 4.7.5 Visibility analysis of a facet .......................................................................... 85 4.8 Constrained Multi-level Optimization ................................................................. 86 4.9 2-Level Genetic Algorithm (GA) ........................................................................ 93 4.9.1 Level-1 (L-1) Genetic Algorithm (GA) ........................................................... 94 4.9.2 Level-2 (L-2) Genetic Algorithm (GA) ......................................................... 100 4.9.3 Example of GA implementation .................................................................. 101 4.10 Parallel Processing For Implementation ........................................................ 103 4.11 Results .......................................................................................................... 104 4.12 Limitations In Implementation ....................................................................... 109 4.12 Order Of Algorithms ...................................................................................... 110 4.13 Conclusions And Future Work ...................................................................... 111 4.14 References .................................................................................................... 112 CHAPTER 5: ADDRESSING PROBLEMS WITH GEOMETRIC SINGULARITIES UNIQUE TO 2D SLICE MODELS ............................................................................... 114 5.1 Introduction ..................................................................................................... 114 5.2 CAPP For Additive Rapid Manufacturing ........................................................ 115 5.3 CAPP For Subtractive Rapid Manufacturing ................................................... 116 5.4 Combined Use Of Polygonal And Slice Models For CAPP ............................. 118 5.4.1 Visibility mapping from slice to polygonal model ........................................ 119 5.5 Challenges In Use Of Polygonal And Slice Model .......................................... 120 5.6 CAPP Challenges Using Slice Model For Multi-axis Machining ...................... 121 5.7 CAPP For Multi-axis Machining ......................................................................... 123 5.7.1 CAPP for discrete 3-axis process using polygonal models ........................ 123 5.7.2 CAPP using multi-colored polygonal models ............................................. 123 5.8 Literature Review ............................................................................................ 123 5.9 Overview Of Solution Method ......................................................................... 126 5.10 Implementation .............................................................................................. 127 5.11 Setup Planning Using Hybrid Model ............................................................. 131 5.12 Visibility Of Parallel Segments ...................................................................... 132 v 5.13 Implementation ............................................................................................. 135 5.14 Conclusion .................................................................................................... 138 5.15 References .................................................................................................... 138 CHAPTER 6. CONCLUSION AND FUTURE WORK .................................................. 140 vi ACKNOWLEDGEMENT I would like to take this opportunity to express my gratitude and thank those who helped me in every way they could towards completing this dissertation. Without their support, this would not have been possible. First of all, I would like to thank my advisor Dr. Matthew Frank. His inspiring advice has guided me throughout my research and study during past six years. He has always been kind and supportive which made my research and project-work a pleasant experience. Most importantly his work and student management nature is something I will look up to for rest of my career. I couldn’t have asked for a better major professor. I would also like to thank Dr. Frank Peters for recruiting me as a T.A. for spring 2009 semester that made it possible for me to be a student at Iowa State University. Taking his courses has always been a fun learning experience. Next, I would like to express my sincere gratitude to my other committee members Dr Iris Rivero, Dr John Jackman, Dr James Oliver for doing me a favor by being on my committee. I am extremely thankful to my lab mates Lei Shuangyan, Prashant Barnawal, Chen Niechen, Hou Guangyu, Zhu Siqi for making these 6 years of journey fun, enjoyable, memorable for life and full of support. It would have been difficult to remain sane without you all. Last but not least, I owe the success of this dissertation to my family for their love and support. I would not be here today without their continued love and support. vii ABSTRACT This dissertation provides new methods for the general area of Computer Aided Process Planning, often referred to as CAPP. It specifically focuses on 3 challenging problems in the area of multi-axis CNC machining process using feature free polygonal CAD models. The first research problem involves a new method for the rapid machining of Multi- Surface Parts. These types of parts typically have different requirements for each surface, for example, surface finish, accuracy, or functionality. The CAPP algorithms developed for this problem ensure the complete rapid machining of multi surface parts by providing better setup orientations to machine each surface. The second research problem is related to a new method for discrete multi-axis CNC machining of part models using feature free polygonal CAD models. This problem specifically considers a generic 3-axis CNC machining process for which CAPP algorithms are developed. These algorithms allow the rapid machining of a wide variety of parts with higher geometric accuracy by enabling access to visible surfaces through the choice of appropriate machine tool configurations (i.e. number of axes). The third research problem addresses challenges with geometric singularities that can occur when 2D slice models are used in process planning. The conversion from CAD to slice model results in the loss of model surface information, the consequence of which could be suboptimal or incorrect process planning. The algorithms developed here facilitate transfer of complete surface geometry information from CAD to slice models. The work of this dissertation will aid in developing the next generation of CAPP tools and result in lower cost and more accurately machined components. 1 CHAPTER 1. INTRODUCTION 1.1 Background 1.1.1 Computer Aided Process Planning (CAPP) The research in this dissertation focuses on Computer Aided Process Planning (CAPP) for Z advanced manufacturing applications. A process plan for a manufactured component can include all the steps required to deliver the completed part, from preparing the raw material, fixturing, tool Y X and/or mold selection, setup planning, and the Figure 1: Schematic of milling specific machine instruction for the actual process machine that creates it. Prior to manufacturing a physical product using any process, it is necessary to consider various product attributes such as geometric complexity, material, surface finish, geometric accuracy, application, etc. These product attributes influence the choice of the manufacturing Figure 2: CNC milling machine process and its relevant parameters that need to be set for each product. In order to efficiently produce a high quality product, optimal process parameters must be determined through an extensive analysis of the product’s critical attributes (e.g.; overall size, material, geometry, tolerances, surface finish, etc.). When this analysis is aided by the use of software, it is commonly called Computer Aided Process Planning (CAPP). Without CAPP, process planning must be done manually by a skilled operator, technician or manufacturing engineer skilled in the particular manufacturing process. 2 This consumes a great deal of time and can often lead to generally sub-optimal plans. The use of CAPP provides more optimized process planning that provide more extensive details faster and result in higher quality, lower cost products. One can argue that the use of advanced tools like CAPP can have a huge impact on the manufacturing sector, driving down costs to avoid outsourcing, improving quality to reduce warranty issues, and allowing faster product development and reducing time to market. It is in this broader area of CAPP that the current dissertation focuses; to develop new methods for the automated Figure 3: CNC milling process process planning of CNC machining using milling. 1.1.2 CNC machining (milling) Computerized Numerical Control or CNC was first developed shortly after WWII by John T Parson as a way to manufacture integrally stiffened skins for aircraft. Since then, CNC milling machines found applications across an array of industries and processes, where complex geometry could now be created in automated milling machines. CNC-milling is a process of incrementally cutting material from a work-piece until a pre-determined geometry is achieved, under the control of a numerically driven set of instructions executed by a computer. This involves using a simultaneously advancing and rotating tool that performs the cutting operation.
Description: