Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University Computer-aided design, synthesis and evaluation of novel antiviral compounds A thesis submitted in accordance with the conditions governing candidates for the degree of Philosophiae Doctor in Cardiff University Michela Cancellieri Supervisor: Dr. Andrea Brancale October 2014 --T' I , l l r DECLARATION This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. sisned /,i *-t- G"--, [0^u* (candidate) ort"\llo l*t* STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of .... ..(insert MCh, MD, MPhil, PhD etc, as appropriate) Sisned *"lc .Q** (-.W.w...(candidate) ) Date Ultol.o.t+ ,,t-, STATEMENT 2 This thesis is the result of my own independent work/investigation, except where othenrvise stated. Other sources are acknowledged by explicit references. The views expressed are my own. signed ltn'Ofl./c= ,Q**r tLr|n^. (candidate) ort" )cf t o f Uot a STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available online in the University's Open Access repository and for inter-library loan, and for the title and summary to be made available to outside organisations. sisned U** Fr*"er!l; . .. (candidate) Date 3rl, ,l w t +- 1d/ Ringraziamenti La prima persona a cui vanno i miei ringraziamenti e’ Andrea, un invidiabile supervisor, a cui devo la possibilita’ di aver lavorato a questo progetto e di aver contribuito alla mia crescita professionale. Grazie Andrea per i consigli non solo di lavoro, ma anche personali e per avermi sempre permesso di essere me stessa, senza bisogno di formalismi, con il mio linguaggio colorito e i miei modi a volte bruschi ma sinceri. La piu’ bella cosa che questa esperienza potesse regalarmi e’ l’aver conosciuto delle persone molto speciali che non smettero’ di vedere e sentire una volta chiusa questa parentesi. Immensa gratitudine va alla persona di cui piu’ sentiro’ piu’ la mancanza, Marcella, con la quale si e’ stretta una bellissima complicita’ ed amicizia. Grazie Marcella per essere stata mia guida e sostenitrice, per la pazienza che hai avuto e il tuo preziosissimo aiuto. Il continuo entusiasmo e i sorrisi con cui mi hai sempre accolto e confortato sono ineguagliabili, sei davvero la migliore compagna di viaggio che potessi desiderare e la piu’ bella scoperta di questa avventura. I miei ringraziamenti vanno anche a te, caro Salvotto, il burbero dal cuore dolce e tenero, sempre pronto ad aiutarmi e con cui sono libera di esprimere il mio essere a volte un po’ maschiaccio. Un pensiero va anche anche a Samia con le sue pillole di saggezza, a Gilda, per aver portato un’ aria di giovialita’ in laboratorio, a Francy, Silvi, Lucy, Rulli, Eli e Patz, per aver accorciato le distanze che ci separavano con il fedele diario di bordo e alla mia migliore amica Lola, per aver detto sempre le parole giuste al momento giusto, senza il bisogno di cercarsi. Impossibile non ringraziare la mia famiglia, per avermi sempre incoraggiato nelle mie scelte e, in particolar modo, mia madre, confidente ed amica, l’unica a riconoscere solo da uno sguardo i miei altalenanti stati d’animo, nonostante i 1.557,49 km che ci separano. Profonda riconoscenza per la mia adorabile zia, che anche in questa circostanza si e’ rivelata la migliore dispensiera di consigli di vita. In ultimo, ma non per importanza, Daniele: nonostante la paura e i timori inziali, ti sei lasciato convincere da questa folle ragazza che ti ha scelto come uomo e compagno di vita. Grazie per saper domare il mio animo ribelle, per i tuoi ‘‘non preoccuparti, bensi’ occupati’’, per prenderti cura amorevole di me, ma soprattutto per aver sconvolto la tua quotidianita’ ed avere seguito/inseguito me e i miei sogni. Abstract RNA viruses are a major cause of disease that in the last fifteen years counted for frequent outbreaks, infecting both humans and animals. Examples of emerging or ri-emerging viral pathogens are the Foot-and- Mouth disease virus (FMDV) for animals, Chikungunya virus (CHIKV), Coxsackie virus B3 (CVB3) and Respiratory Syncytial virus (RSV) for humans, all responsible for infections associated with mild to severe complications. Although both vaccines and small-molecule compounds are at different stages of development, no selective antiviral drugs have been approved so far, therefore for all four these viruses improved treatment strategies are required. Promising targets are the viral non-structural proteins, which are commonly evaluated for the identification of new antivirals. Starting from the study of different viral proteins, several computer-aided techniques were applied, aiming to identify hit molecules first, and secondly to synthesise new series of potential antiviral compounds. The available crystal structures of some of the proteins that play a role in viral replication were used for structure- and ligand-based virtual screenings of commercially available compounds against CVB3, FMDV and RSV. New families of potential anti-CHIKV compounds were rationally designed and synthesized, in order to establish a structure- activity relationship study on a lead structure previously found in our group. Finally, a de-novo drug design approach was performed to find a suitable scaffold for the synthesis of a series of zinc-ejecting compounds against RSV. Inhibition of virus replication was evaluated for all the new compounds, of which different showed antiviral potential. Table of contents Chapter 1: Molecular Modelling in drug discovery 1.1 The drug discovery ‘game’ 2 1.2 Introduction to Molecular Modelling 3 1.2.1 Quantum mechanics 3 1.2.2 Molecular mechanics 4 1.2.3 Energy minimization 5 1.2.4 Conformational analysis 6 1.3 Computational approaches in drug discovery 7 1.3.1 Homology modelling 7 1.3.2 Ligand-based drug design 8 1.3.3 Pharmacophore models 8 1.3.4 Structure-based drug design 9 1.3.5 Docking and Scoring 10 1.4 Aims of the study 12 References 13 Chapter 2: Coxsackie Virus B3 Introduction to the virus 17 2.1 Coxsackie virus B3 17 2.1.1 Virion structure 18 2.1.2 Genome organization 18 2.1.3 Viral proteins 19 2.1.4 Viral life cycle 20 2.1.5 Current treatment 21 2.2 3A protein and 3D polymerase as antiviral targets 22 2.2.1 3A protein 22 2.2.2 RNA-dependent RNA polymerase 23 Results and discussion 27 2.3 Structure-based Virtual Screening on the 3A protein 27 2.3.1 Homology model 27 2.3.2 Pharmacophore models 27 2.3.3 Molecular docking and consensus scoring 30 2.4 Design and synthesis of tetrazole derivatives 31 2.4.1 (Benzylthio)-1-aryl-1H-tetrazoles 31 2.4.2 Biological evaluation 40 2.5 Computer-aided approaches on the 3D polymerase 41 2.5.1 Structure-based Virtual Screening 41 2.5.2 Model of the GPC-N114 bound to the polymerase 44 2.5.3 Design of new GPC-N114 analogues 45 2.6 Synthesis of GPC-N114 analogues 49 2.6.1 2,5-bis-Aryl-1,3,4-oxadiazoles 49 2.6.2 1,3-bis-Aryl-1H-benzo[d]imidazol-2(3H)-ones 51 2.6.3 1-Methyl-3,4-bis(phenylamino)-1H-pyrrole-2,5-dione 54 2.6.4 1-Methyl-3,4-bis(4-nitrophenylamino)-1H-pyrrole-2,5 dione 58 2.6.5 N1-Phenylbenzene-1,2-diamine 60 2.6.6 N1,N2-Diphenylbenzene-1,2-diamine 61 2.6.7 Biological evaluation 62 2.7 Design and docking validation of new GPC-N114 analogues 64 2.7.1 Bis-Aryl sulfonamides 65 2.7.2 bis-Aryl amides 66 2.7.3 Biological evaluation 67 2.8 Ligand-based Virtual Screening 70 2.8.1 Shape complementarity search with ROCS 70 Conclusions 72 References 75 Chapter 3: Foot-and-mouth Disease Virus Introduction to the virus 82 3.1 Foot-and-mouth Disease Virus 82 3.1.1 Diversity and similarity to other Picornaviruses 82 3.1.2 Current treatment 83 Results and discussion 84 3.2 Structure-based Virtual Screening on the FMDV polymerase 84 3.3 De novo drug design approach 87 3.4 Synthesis of coumarin-based structures 88 3.4.1 7-((1H-Benzo[d]imidazol-2-yl)methoxy)- 2H-chromen-2-one 88 3.4.2 N-(2-Oxo-2H-chromen-7-yl)-1H-Benzo[d]imidazole- 2-carboxamide 89 3.4.3 7-Aryl thio methyl-2H-chromen-2-ones 91 3.4.4 7-Aryl sulfinyl methyl-2H-chromen-2-ones 93 3.4.5 7-Aryl sulfonyl methyl-2H-chromen-2-ones 94 3.4.6 Biological evaluation 97 Conclusions 98 References 99 Chapter 4: Chikungunya Virus Introduction to the virus 103 4.1 Chikungunya Virus 103 4.1.1 Virion structure 103 4.1.2 Genome organization 104 4.1.3 Viral proteins 104 4.1.4 Viral life cycle 105 4.1.5 Current treatment 106 4.2 nsP2 protease 107 4.2.1 Structure 107 4.2.2 Mechanism of action 108 Results and discussion 109 4.3 nsP2 Protease as a target for the identification of new antivirals 109 4.3.1 Project background 109 4.3.2 Design and synthesis of novel derivatives 112 4.4 Synthesis of (2E)-N’-benzylidene aryl acrylohydrazides 113 4.4.1 (2E)-N’-Benzylidene aryl acrylohydrazides 114 4.4.2 (2E)-N'-(4-Hydroxybenzylidene)-3-(4- isopropylphenyl)acrylohydrazide 117 4.4.3 Biological evaluation 119 4.5 Synthesis of N-(1H-benzo[d]imidazol-2-yl)aryl amides 121 4.5.1 N-(1H-Benzo[d]imidazol-2-yl)-3-(4-tert- butylphenyl)propanamides 122 4.5.2 (N)-)1H-Benzo[d]imidazol-2-yl)-3-(4-tert- butylphenyl)propanamides 124 4.5.3 Biological evaluation 126 4.6 Synthesis of 1-phenethyl-4-phenyl-1H-1,2,3-triazole 128 4.6.1 Biological evaluation 131 4.7 Synthesis of (E)-2-benzylidene-N-(4-tert- butylstyryl)hydrazinecarboxamides 132 4.7.1 N-((E)-(4-tert-Butyl)styryl)-2-(benzylidene) hydrazinecarboxamides 133 4.7.2 Biological evaluation 135 4.8 Synthesis of 2-(benzylidene)-N-aryl hydrazinecarbothiamides 136 4.8.1 2-(Benzylidene)-N-aryl hydrazinecarbothiamides 137 4.8.2 Biological evaluation 139 Conclusions 140 References 141 Chapter 5: Respiratory syncytial virus Introduction to the virus 150 5.1 Respiratory Syncytial Virus 150 5.1.1 Virion structure 150 5.1.2 Genome organization 151 5.1.3 Viral proteins 152 5.1.4 Viral life cycle 153 5.1.5 Current treatment 154 5.1.6 New treatments under development 154 5.1.7 Vaccines under development 156 5.2 M2-1 protein 157 5.2.1 Structure 157 5.2.2 Mechanism of action 159 5.3 Fusion protein 160 5.3.1 Structure 160 5.3.2 RSV entry inhibitors targeting F protein 162 Results and discussion 164 5.4 M2-1 protein as a target for drug design of new antivirals 164 5.4.1 Zinc-binding domain of M2-1 protein as a target for de novo design 164 5.4.2 De novo drug design 165 5.5 Synthesis of aryl dithiocarbamates 167 5.5.1 2-Chloromethyl benzoimidazol carbodithioates 167 5.5.2 2-Chloromethyl benzoxazol carbodithioates 169 5.5.3 2-Chloromethyl benzothiazole carbodithioates 171 5.5.4 Aryl dithioates 172 5.5.5 Dithiocarbamate methyl aryl acids 174 5.5.6 Biological evaluation 176 5.6 Structure-based Virtual Screening on the M2-1 protein 179 5.6.1 Pharmacophoric filter and docking methods 179 5.7 Ligand-based Virtual Screening on the F protein 182 Conclusions 184 References 186 Conclusions 197 Chapter 6: Experimental part 6.1 General information 202 6.1.1 Molecular Modelling 202 6.2 Synthesis of tetrazoles derivatives 203 6.2.1 General procedures 1-5 203 6.2.2 Aryl isothiocyanates 207 6.2.3 Aryl mercaptotetrazoles 211 6.2.4 Benzylthio-1-aryl-1H-tetrazoles 215 6.2.5 (5-(Benzylthio)-1H-tetrazol-1-yl)benzoic acids 223 6.2.6 Ethyl 4-(5-(benzylthio)-1H-tetrazol-1-yl)benzoates 226 6.3 Synthesis of 2,5-bis-aryl-1,3,4-oxadiazoles 228 6.3.1 General procedures 6-7 228 6.3.2 2-Phenylacetic acid 229 6.3.3 Ethyl 2-(4-nitrophenyl)acetate 229 6.3.4 Aryl acetohydrazides 231 6.3.5 2,5-bis-Aryl-1,3,4-oxadiazoles 233 6.4 1,3-bis-Aryl-1H-benzo[d]imidazol-2(3H)-ones 235 6.4.1 General procedure 8: synthesis of 1,3-bis-aryl- 1H-benzo[d]imidazol-2(3H)-ones 235 6.4.2 1,3-1H-Benzo[d]imidazol-2(3H)-one 235 6.4.3 1,3-bis-Aryl benzoimidazol-2-ones 237 6.5 Methyl-3,4-bis(phenylamino)-1H-pyrrole-2,5-dione 239 6.5.1 N-Methyl-3,4-dibromomaleimide 239
Description: