ebook img

Computer aided design of control systems : proceedings of the IFAC Symposium, Zürich, Switzerland, 29-31 August 1979 PDF

656 Pages·1980·24.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computer aided design of control systems : proceedings of the IFAC Symposium, Zürich, Switzerland, 29-31 August 1979

IFACCo nferPreoncceee dings ATHERTON: MultivariTaebclhen ologSiycsatle ms BANKS PRITCHARD: ControoflD istribPuatreadm etSeyrs tems & CICHOCKI STRASZAK:S ysteAmnsa lysAipsp licattiooC nosm plePxr ograms & CRONHJORT: RealT imeP rogramming 1978 DE GIORGIO ROVEDA: Criteforri aS electAipnpgr opriTaetceh nologuinedseD ri fferent & CulturTaelc,h nicaanldS ociCaoln ditions DUBUISSON:I nformatiaonnd S ystems GHONAIMY: SysteAmpsp roacfohr Development HASEGAWA INOUE: UrbanR,e gionaanld N ationPalla nni-nEgn vironmenAtsaple cts & LEONHARD: ContrionlP oweErl ectroannidcE sl ectrDirciavle s MUNDAY: AutomatCiocn trionlS pace NIEMI:A LinkB etweeSnc ienacned A pplicatoifoA nust omatCiocn trol NOVAK: SoftwafroerC omputeCro ntrol OSHIMA: InformatiCoonn trPorlo bleimnsM anufacturTiencgh nology RIJNSDORP:C aseS tudiiensA utomatiroenl atteodH umanizatoifoW no rk SAW ARAGI AKASHI:E nvironmenStysatle Pmlsa nninDge,s igann dC ontrol & SINGH TITLI:C ontraonld M anagemenotfI ntegraItneddu strCioamlp lexes & SMEDEMA: RealT imeP rogramming 1977 NOTICE TO READERS DeaRre ader youlri briasnr oyat l reaas dtya ndoirndgec ru stoomres ru bscrtiotb heisrse rimeasyw, e r ecommetnhda t If youp lacae s tandoirns gu bscrioprtdieotrnor eceive immuepdoinpa utbelliyc aatlinloe nwv olumes publisihnte hdiv sa luasbelrei Sehso.u yloduf intdh atth evsoel umneosl ongseerr yvoeu nre �dyso uorr der canb ec ancealtla endyt imwei thonuott ice. ROBERTM AXWELL PublisahtPe err gamPorne ss COMPUTER AIDEDD ESIGNO F CONTROL SYSTEMS Proceedoiftn hg/esF C A S ymposz"um, Ziirz'Scwhz',t ze2r9l-3aA1nu dg,u1 s97t9 Editebdy M.A.C UENOD Geneva, Switzerland Publishfoerd t he INTERTNIAONAFLE DEARTIONO FA UTOMATICCO NTROL by PERAGMONP RESS OXFORD · NEW YORK · TORONTO · SYDNEY · PARIS· FRANKFURT U.K. PergamPorne Lstsd .H,ea dingHtiolHnla ll, OxofrdO X3O BW,E ngland U.S.A. PergamPorne Isnsc M.a,x weHlolu sFea,i rvPiaerwk , ElmosrfdN,e wY or1k0 523U,. S.A. CANADA PergamoofCn a nadSau,i 1t0e4 1,5 0C onsumReorasd , WillowdOanltea,rM i2o1 P9,C anada J AUSTRALIA PergamPorne (sAsu sPtt.y)L. t dP.,. OB.o x5 44, PotPtosi nNt.,S .W2.01 1A,u stralia FRANCE PergamPorne SsAsR L2,4 r ued eEsc oles, 7524P0 ariCse,d e0x5 ,F rance FEDERARLE PUBLIC PergamPorne Gsmsb H,62 42K ronberg-Taunus, OF GERMANY Pferdstlr,Fa esdseerR aelp ubolfiG ce rmany Copyrig1h9t8©0I FAC AllR ightRse serveNdo. p arotf t hipsu blicatmiaoynb e reproducsetdo,r ienda retrieval soyrts rtaenm smititne d onyf ormo r by anym eanse:l ectroneilce,c trostatic, magnettiacp em,e chanicpahlo,t ocopyirnegc,o rdionrg otherwiswei,t houpte rmissiionn w ritinfgr omt he copyright holders. Firesdti t1i9o8n0 British LiCbartaarlyo guiinnPg u blicatDiaotna IFACS ymposiuomnC omputAeird eDde sign ofC ontrSoyls teZmsu,ri ch, 1979 Computaeird edde siogfcn o ntsryoslt ems. -(InternatFieodnearlao tfi oAnu tomatic ContrCooln.f erepnrcoec eedings). l. Automactoinct -rDoalt par oces-sing Congresses I.T itles II.C uenoMdi,c hel Swiss Ill. FederaotfiA ount omaCtoinct rol 629.8'312 1)213 79-42655 ISBN0- 08-024488-2 Thesper oceediwnegrser eproducbeydm eanso ft hep hoto­ offsperto cesussi,n gt hem anuscrisputpsp libeydt hea uthors oft hed ifferepnatp erTsh.e m anuscriphtasv eb eent ypewdi th differetnytp ewritaenrdts y pefacTehse.l ayoutth,efi gures andt abloefss omep aperdsi dn otc onforemx actwliyt ht he standarredq uiremecnotnss;e quentthley reproduction does notd isplacyo mpleutneif ormitTyo.e nsurrea pipdu blication thesien consistecnocuilendso tb e changedn,o rc oultdh e Englisbhe checkecdo mpleteTlhye.r eaderasr et herefore asketdo e xcusea nyd eficienicnti heivoss l umew hicmha yh ave arisferno mt hea bovcea uses. Editor The PrintienGd r eaBtr itabiyAn . W heato&n CoL.t dE,x eter IFACS YMPOSIOUNM C OMPUTERA IDED DESIGONF C ONTROSLY STEMS Orgazneibdy TheS wisFse deratoifoA nu tomatCiocn tr(oSlG AA/S SPA) Sponsobrye d TheI nternatiFoendaelr atoifoA nu tomatCiocn trol Systems Engineering Committee Applications Committee ComputeCro mmittee EducatiCoonm mittee InternoantaiPlr ogmr Caommittee M. Mansou(rS witzerl(aCnhda)i rman) K.J .As tro(mS weden) W. Findei(sPeonl and) R.I serma(nFn. R.G.) G.A .K orn( U.S.A.) P.M . Larse(nD enmark) M. G.S ing(hF rance) Stre(jCcz echoslovakia) V. Unbehaue(nF .R.G.) H. A.v anC auwenberg(hBee lgium) R.v anN autaL emke( Netherlands) H. J.H. Westco(tUt. K.) andm emberosf t heN ationOarlg anizing Committee NatioOnargla zniinCgo mmittee W. Schaufelbe(rCgheari rman) F.C ellier A. Glattfelder H. P.G repper E.R uosch M. Steiner J.We iler FOREWORD Theu seo fc opmutertso an alysean d designt hec ontroolf d ifferenptr ocsesesi s nowa commonp ratcice. Programp ackgaes whichi ncluddeif ferenatl groithms developiendm oret han thredee cadehasv eb eeni mplemteendo nd igitaclop muters tog ives tduentansd engineeras p owerftuol olw ithw hictho d esignt he- control fors ysmtsei nd ifefrenatr eaosf a ppilcatino. Thea imo ft hisS ypmosiumi st od emnostratteh es ttae-of-thei-nat rhte a reao f copmuteari dedde signo fc ontrosly tsem.s TheI nternatniaolP rogramC ommittee hasm adea carefusle lecnt ioofp aperfso r tShyemp osiuman d I hopet hatt he resulwti llb e benfeicila toc ontroeln gnieerisn teresitne tdh isy oung filed. Mansour M. Chairman InternatniaolP rogramC ommittee xiii SessioDne siagnndA nalysMise thofdso Prl anCtso,n trollers 1. andC ontrSoyls tems CADO F MINIAML ORDER CONTROLLERS A.B aelstrainndGo . C elentano IsuttiEotl etttercconoUi,n ivedrisN iatpoalN ia,po lIiat�yl AbstractI.n thisp apert hep olea ssignmenptr obleims reformula­ teda s a standarpdr obleomf nonlineaprr ogramminPgr.o cedures forp olea ssignmebnty usingd ynamicco ntrollewrist hm inimaolr ­ dera rer eportebdo thf ort hei nteracticnags ea ndt hen oninter­ actingo ne.N umericaelx ampleasr ed evelopeodn a digitaclo mpu­ ter. INTRODUCITON Leta lineart imei nvariandty namic micc ontrolleasr (2.) systemb e describebdy : If r+m n+1 theser esultasr en ot < practicable causneo thinigs saida b­ Ax + Bu ( a1) x = outt her emaininng+ 1-m-eri genvalues y Cx ( b1) = whichm ayr esultw ithr ealp ositive n r m whereX ER, UER, yER, andA , B, C part. overcomseu ch To difficultyi t arer ealm atricewsi tha ppropriadtie js possible taas si�n1 41a,lw aysb y mensions�.o reovelre tt hes ystem (1)m eanso f a nondynamciocn troller, m+ be completerleya chablaen do bservabler -1, 1, eigenvaluaersb itrarily 1 � withr ankB r, rankC m. closet o m+r-1s pecifiesdy mmetrivca ­ = = It is wellk nown1 1 that,i f max(r,m)l ues,s o that1 -1d egreeosf freedom I = n, by usinga linearn ondynamciocn area vailablteo confinteh er emaining troller: eigenvaluteos a specifierde giono f thec omplepxl ane. u Ku + v , (2) = If thisp robleims unsolvabloer if r.m r withK ER , VER, it is possiblteo alle igenvalumeuss tb e exactlays si­ assigna n arbitrarsyy mmetriscp ectrum gnedt hena dynamic controldleesrc,� i to thed ynamimca trixA +BKCo f the bed by: closedl oops ystemS.i ncei n practice Ww + Dy + Ev (3a) n independeinntp utso r outputasr e w = nota lwaysa vailablet,h enc onsidera­ u Hw + Ky + v (3b) = blei nteresatr isesi n designincgo n­ v r W, wherew £R, VER and D, K are H, trollerbsy usingo nlyt hea vailable realc onstanmta tricewsi tha ppropria­ inputsa ndo utputs. te dimensionmsa,y b e used; s,6J. In l2,3,J4 it hasb eens hownt hat,f or By usingt hep rocedureisn J,12,3,J4 almosta llp airs( B,C),m in(n,r+m-1) thed egreeosf freedoimn thec hoice eigenvaluceasn b e assigneadr bitrari of them atrixK in (2)a ren otc omple­ ly closet o min(n,r+m-s1p)e cified telyu tilizeds,o thats ometimenso n- symmetrivca luesb y a linearn ondyna- A.B alesot arnidGn .C eelnatno 2 dynacmoinct roclablnee rsu sed in­y Cx (Sb) = steoafdd y naomnsie;cm oreover also is witthhp er oceidnu renso atl l A. IS,16 Asi ti sw elkln oiwfmn a x(=mn , r) thdee groeffe resed oamv ailwaibtlhe the pmraobybe al lewmsa oysl v1e d thdey nacmoinct rolalreuert ili­ 1I (3) morgeee nralilfmy +,rn +1f,o rm ost zesdot haetf ficdiyennactmo inct rol­ > cil alpla i(rBs, iCti) s p osstiobf lien d lercsab ne dewsiitgrhne edduo credd- am atrKs iuxct hh atths ep ecotfr um er. A+BiKsaC r bitrcalrotisole y Int hipsa ptehrpe r oceadrugeri evse n A 12,3, Itm usbten ottehdab tyt hper o­ fodre sigdnyinnagom rii cns, o mpea r­41. ceduurseeisdn onlmya trKi ces ticuclaasrne osn dyncaomnitcr,o llers 13,41 witrha nkKa re conIsfsi udcehr ed. witmhi niomradlse orl,v tihnpego le � 2 constornat ihrneat no kfK i sr emoved assnimgepnrto balthe amn Tdw.to y pes itm awye lhla ptpheant t haeeli lg en­ ofd ynacmoinct roalrcleoe nrssi dered, alumeasby ea ssigenveeidnfm, + r<n+1. thien teraocnteaissdn, yg n acmoimc­ Moreionvp erra ctthirece eq eumiernt pnesataonrtdsh ,ne o inn teracting thate iagleln vcaablneua ersb itrarily onse,a so bseerrsv. assicganbnee rd e laixfte hdde e sired Firstthley apsoslieg pnrmoebniltse m eirenvaarrleeu aelsi zable. reformausal n aotneldi near programm­ Geenrailtli ysv erdyi ffitcoeu sl­t inpgr obtlheemadn, y nacmoinct roller tabliifas d he sisreeotdfe igenval� isd eetrmibnyme eda onfas c onvergent esm abye a ssniegdm;o reiofvt ehri s algorTihtaehl mg.o rmiatbyhev m i ewed isp ossainbmdli en (m,irtm) u st asa ne xtenosfti hoceny clcoiocr dina � 2 be soanl ovneldi snyesawtrie tmnh tea scmeentth od equatainomd.n ursn knotwhnisssy; ­ 171 The proceb·d enuei rmepsl ehmaevnet ed steimsd iffitcowu rl�tdt oewe nx pli­ ona d igictoamlp auntsdeo rmn eu meri­ citebleys,it dose osl Tvhe.e rifto re caelx amaprlreepe so rted. isc onvetnori eefnotr mtuhpleoa ltee assigpnrmoebnbltyme ema onfas n on­ THBEA SAILCGI OTRHM dynacmoinct raosfl ollelro ws. Solvtihneg apsoslieg pnrmoebnbltye mL eittb e: ad ynacmoinct roofml ilenrio mradle r leatdofs i rsetxlaym iinfti hnpegr o­ (6 ) bleimss olvbaybm aleneos fa n ondytnh�ce h aractpeorliysntooifmAc i+ aBlK C micco ntraosl leTrha el goritahnmd (2). develfoosproe ldv tihnipgsr obilse m d0) (7 ) alsfou ndamientn htdeae ls oifgd ny n� micco ntroolfml ienriosmr adle r. thmeo npiocl yntohmreio aooltf ws h i Let: chg ivtehse smeotr eloevSte( r. , A;n i=,1. .)b ea m teriicnR . A ={.l\ , . . ,n} (4) Byf indinmgi nitwmhiuetrm sh,ep ect bea s pecisfeoitfe s dy mmectormipcl ex tot hmea trKi,ox ft hfeu nction: numbie.ress.u, c thh aitfA also i EA wherdee notthees ccoomnp-lex \�EA, * (8 ) j1 ugate. A nonddyensacmri�c controller, . where bebdy musbtef insdot hatth e (2), T a = sepctorfut mhd ey nammaitcrA i+xB KC K ()9 oft hcel olsoeodsp y stem: T d = (0 1) (+ABKC+B )vx (Sa) x = CAD ofM imnailO rderC onotlrrlse 3 ift himsi niimszu remo a, solutTihomena trigxi vitnhmgei niomfu m K, oft hpeo ela ssiegnpntrm obilsde em­ e(Kc)a,bn e obbtyau isnitenhdgfe o l termiinfte hdme;i niimsgu rme atelro wing awlhgioccrahin t vhibmee,w ed thazne rtohr ese ultnionngd ynamaisac g eenralciyzcelcdio co rdaisn­ate ntroilslt ehorep tiomnaweli trhCe£ s Ec enmtteh oJd7 J. ecttot hgei vmetenr ic. ALGORAI.T HM Tom iniem(iKlz)eei t tb e: Ste1p.L eittb eK =,Kw heKr ies a s s startinogf K ,cS h oO=i,a c ned B= ( bb b) ' (1 )1 s 1 2 r Ci,i,. .,.i) dai sposoiftt hieo ni n T 1 2 r K= ( kk k ') (2 ) 1 2 r tege,r2.s,., .r . 1 1 T T Ste2p.M iniem(iKz)e rweistptheo c t A+B=K( CA +b .k.kC.)=C+ b. i#L j thvece tokr'si i=,i,. .,.i 'b y J J l l (1 i 1 2 r T 3) usi(n2g0a )ns du bstitiunk.t .e = A.+ b .k.Ci =,.1 .,.r ; k. StepC ompeu(tKie) fe; l( K)wl <h£e,r e l l l 3. thedne,n oting the ch£ai rsaa p cotseirntiuismvtcbeihe cor as pceocnlo ­rdin ynomoifAa .al s f ollows: gltyo t hreqe uiprreedc itshiaeol n­, l goristthompo st,h ersweiet(s Kei) n ( 1 S anedx ecSutte2eap g ain. 4) s ancdh ooasm ientgrS ai sc: Thael gorAii tsch omn verignednete;d itm abye conassia dnee xrteedn sion T S(z,=wI l )z -Iw=l( z-Qw()z-w), Q oft he ccyocolridcai sncametenett h od ( 5) J7lI.tg ivaes se quoefnm caet riceB 1 wheQri esa n .sny mmeptorsiict iKv,es ucthh acto rresptohnsede i­ngly h defimnaittreti hxfe,u nctiiosn queonfce e() Ki sm onodteocnree scent: ()8 h rewriats(t seePDep n�ei)nx thael gorsittoihpnmcs o rrespondence : ofa K 00g ivaiv nagel e u(Kn00e)aa r e(K=I) J Fk..- Ca.J- d,) C16) 10 miniomrau ms apdodilonefet ( K). l l l Ift he abmsionliiumstnu eoma t t tain­ where edi,ti sa dvistaorb elaep tphlaeyl ­ T a.= aC. .,. ,.a. ,.a) (7 ) goriAtw himta hn emwa trKi oxrw ith 2 1 s 1 l ni i i a ndeiws posCii,ti,i. o.,n.i) . 1 2 r F.= (CbC.A b. Duteot hper opeorftt higeeese n rali­ rl. l l l l being zepds eudomiantvreircs,ete sh e 81 a vcetokr.(s 2 0i)=,,12 . ,. I. h ,arvm,ei - n-i1 , nimnaoll ra mm oanlgvl e ctomrisn ik-. a 0 n-2,i zin(g1 6t)h;e retfhAoelr gel o rAi thm = .( 1 leatdoas m atrKi00wx h iicssh u bopti­ Q. 9) l a 0 0 mawli trhe spteotc hte gniovremn. 1i, 0 0 0 DESIOGFIN N TERADCYTNIANMGI C Ofc oursmei ntiohmfeeu (mKw )i trhe CONTROOLFML IENRIOSMR ADLE R spetcott h veet cokr isa ttaiinn eFdo arg ivseent thAel gorAi thm i corrnedsepwnoicteah kgivbeyn: magyi ve a(4l )o coslpyo ssteedtm h e i (5) poloefws h iacrhne o t iantl hlse e t k� . Ft= . (-ad.), (20) This mfabayecd tut eot hset ruc l l l t(4u.) rparlo peorftt hiseey ss (t1e)m; Wherdee nFotegsee nrtahlepi szee�d I indneeeecds scaornyd iftoiaror nbsi ­ doinvoeftr hsmeea trFi.x Jl8. traproyla es sigbnyam n eonntmd iycn a l 4 A.B aletsroi naGn.dC elteanno v 1 controlleirs thec ompletree achabili rank(BA B ...A r-· Bl n (28a) = ty ando bservabiliotfy t hes ystem( 1) and and,m oreovert,h atm .r n � 191. T T T Tv0-1 rank(CA C ...A n, (28b) If m.r n certainlsyo mep olec onfigu­ )= < rationcsa nb e realizeodn lyb y using respectivelayn, a rbitrarsyy mmetric a dynamicco ntroller. spectrucma nb e alwaysb e assignetdo (3) By usinga dynamicco ntroller the thed ynamimca trix( 22)b y a suitable 6 closedl oops ystemb ecomes: choiceo f K�,w ith\J =min(,vv 0), v r I I. Fromt heser emarkist is straightfoward A+BKC BH x B to outlinae procedurfeo rs olvintgh e l= ' + v [w DC j w polea ssignmenptro blebmy meanso f a w E (2 1a ) dynamicco ntrolleorf minimaolr der. y (C 0) (2 1b ) = Leti t be: v 1:1 wherew e::.R By rewritintgh ed ynamimca trixa s: a furthesre to f realp oles;t hef ol­ \) '\, lowingn otationwsi llb e usefuli n the A A + B K C (22) v = v v v v developmetnot f ollow: where 3) A = ( 2 v ,n+v ,n+v1- [:)� = f\ +d1 , vf\ +• . •+ d n +v,n (3 0) 0 Bv = I (24) 'p\, ( A) AI I= (3 1 ) rv : v = I -A v n+v n+v-1 = A +-va , A + +-va ( 2 5) 1 v . . • n+v,v cv = [��J T = ( d ,. .., d ,d ) (32) n+v, 2, v 1,v withI thei dentitmya trico f order v v, and "' T (33) av =( an +v,,v. ..., a2, v, a1, v) , (2 6) '\,' \, ( 3 e (K ) =S (a, d ) 4) v v v v thep robleims reformulataesd f ollows: Thep roblemma yb e solvedb y meanso f finda matrixK withm inimavl v thef ollowinagl gorithm. sucht hatt hed ynamimca trix( 22)s hows a preassignsepde ctrum. ALGORITHBM. By a suitablceh oiceo f theo rder v Step�1L.e tt hes tartinvga lueo f v be it is alwaysp ossiblteo satisftyh e equalt o zero;t hea lgorithAm i s appli inequality: ed to minimizee (K e(K). ) = 0 0 (m+v')()r +v n+v ( 72) Step_l.I f mine (K ) wheree: :i s a 2: v v e::, moreoverd,e noteads v andv them i- positivneu mberc hosena ccordingtloy r o nimali ntegerssu cht hat ther equirepdr ecisiont,h ea lgorithm CADo fM iinmaOlr deCro ntlrelors 5 stopso therwisset ep3 is executed. leri s describebdy : Step·3I.f v=vt hea lgorithsmt ops, = (F+HCV)+w H y + Ev, (39) w otherwissee tv =v+1 andg o to step4 . u =( G+KCV)+w K y + v, (40) Step4 . Thea lgorithAm i s applied, withA =A, B=B, C=C, andt hes tarting where v v v value: AV - VF = BG . (4 1) K [v-1 : (35) v, � : In J 5i tJ i s shownt hatt he po- n•vl leso f thec losedl oops ystema reg i- whereK minimizees <K ), to v-1 v-1 v-1 venb y thee igenvaluoefs F together minimizee ( K ); theng o to step2 . v v witht hee igenvaluoefs t hem atrix: RemarkI.f thea lgorithBm s topsa t A = A +B (KH ) (42) v � [] step3 thea bsolutmei nimuims nota t­ 0 tainedi;n thisc asei t is advisablteo reappltyh ea lgorithcmh angintgh ei ni­ tialc onditions. A A +( B (43) v = r DESIGONF NONINTERACTING so thatt herei s no interactiboent we- DYNAIMC CONTROLLEORFS en thep oleso f thec ontrollearnsd t he MINIMALO RDER remaininpgo les. By meanso f thea lgorithBm t hep ole Ifv ;:v: thep rocedurcea nb e conside­ r o assignmepnrto bleims solvedd esigning reda s leadintgo a reduceodr dero bs- aninteracticnogn trolleir.,e .t hec lo- erver;i f v v thep roceduries the r < o sedl oopp olesa rea ssigneadl lt oget- dualo ne. her;m oreovegrr eateirs moreo nero­ If v = = min(v, v ) thep olea ssign- v v r o us is thea lgorithm. mentp roblecma nb e solveda lsob y To overcomteh esed ifficultiuesse c an meanso f noninteractcionngt rollers. be madeo f noninteractcionngt rollers.I ndeedc,h osena set( 29)o f reala nd If v v then oninteractcionngt rol­ distincpto les,f ors akeo f simplicity, r� o leri s describe,d s ee( 3),b y: leti t be: V V F =d i'a g( A A ) FER· , (44) Fw + VBu+ Gy = n+1•···n•+ v' w = T n.v (F+VBH)+w ( G+VBK)+y VBv = V = (VG )= (v, ,v ) , V£R , (45) = v 1 • • • v T r.v = Ww + Ky + Ev, (36) G = v G g1 =' • ( 'gv) ' G£ R ' (46) · · · u Hw + Ky + v, (37) thenf rom( 38)i t results: = T T -1 T. . wherew is a v-vectoarn d = g.( A-A .I ) C =g . (47) v. n+i c., 1 1 l l VA - FV = GC ; (38) i =1 ,2,.. ., v. if v v then oninteractcionngt rol­Moreoverl eti t be: r< o

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.