ebook img

Computational Topology for Data Analysis PDF

454 Pages·2022·13.697 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Topology for Data Analysis

ComputationalTopologyforDataAnalysis Topologicaldataanalysis(TDA)hasemergedrecentlyasaviabletoolforanalyzing complexdata,andtheareahasgrownsubstantiallyinbothitsmethodologiesand applicability.Providingacomputationalandalgorithmicfoundationfortechniquesin TDA,thiscomprehensive,self-containedtextintroducesstudentsandresearchersin mathematicsandcomputersciencetothecurrentstateofthefield.Thebookfeaturesa descriptionofmathematicalobjectsandconstructsbehindrecentadvances,the algorithmsinvolved,computationalconsiderations,aswellasexamplesoftopological structuresorideasthatcanbeusedinapplications.Itprovidesathoroughtreatmentof persistenthomologytogetherwithvariousextensions–likezigzagpersistenceand multiparameterpersistence–andtheirapplicationstodifferenttypesofdata,likepoint clouds,triangulations,orgraphdata.Otherimportanttopicscoveredincludediscrete Morsetheory,themapperstructure,optimalgeneratingcycles,aswellasrecent advancesinembeddingTDAwithinmachinelearningframeworks. TAMAL KRISHNA DEYisProfessorofComputerScienceatPurdueUniversity. BeforejoiningPurdue,hewasafacultymemberintheCSEDepartmentoftheOhio StateUniversity.HehasheldacademicpositionsatIndianaUniversity–Purdue UniversityatIndianapolis,IndianInstituteofTechnologyKharagpur,andMaxPlanck Institute.Hisresearchinterestsincludecomputationalgeometry,computational topology,andtheirapplicationstogeometricmodelinganddataanalysis.Hehas (co)authoredtwobooks,CurveandSurfaceReconstruction:Algorithmswith MathematicalAnalysis(CambridgeUniversityPress)andDelaunayMeshGeneration (CRCPress),and(co)authoredmorethan200scientificarticles.Tamalisafellowof theIEEE,ACM,andSolidModelingAssociation. YUSU WANGisProfessorintheHalıcıog˘luDataScienceInstituteattheUniversity ofCalifornia,SanDiego.PriortojoiningUCSD,shewasProfessorofComputer ScienceandEngineeringattheOhioStateUniversityandpostdoctoralfellowat StanfordUniversity.Yusuprimarilyworksintopologicalandgeometricdataanalysis, developingeffectiveandtheoreticallyjustifiedalgorithmsfordataanalysisusing geometricandtopologicalideas,aswellasinapplyingthemtopracticaldomains.She receivedtheDOEEarlyCareerPrincipalInvestigatorAwardin2006andNSFCareer Awardin2008. “A must-have up-to-date computational account of a vibrant area connecting puremathematicswithapplications.” -HerbertEdelsbrunner,ISTAustria “This book provides a comprehensive treatment of the algorithmic aspects of topological persistence theory, both in the classical one-parameter setting and in the emerging multi-parameter setting. It is an excellent resource for practitioners within or outside the field, who want to learn about the current state-of-the-artalgorithmsintopologicaldataanalysis.” -SteveOudot,InriaandÉcolePolytechnique Computational Topology for Data Analysis TAMAL KRISHNA DEY PurdueUniversity YUSU WANG UniversityofCalifornia,SanDiego UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781009098168 DOI:10.1017/9781009099950 (cid:2)c TamalKrishnaDeyandYusuWang2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 PrintedintheUnitedKingdombyTJBooksLimited,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-Publicationdata Names:Dey,TamalK.(TamalKrishna),1964-author.|Wang,Yusu,1976-author. Title:Computationaltopologyfordataanalysis/TamalKrishnaDey, DepartmentofComputerScience,PurdueUniversity,YusuWang,Halıcıog˘lu gluDataScienceInstituteUniversityofCalifornia,SanDiego. Description:Firstedition.|NewYork:CambridgeUniversityPress,2022. |Includesbibliographicalreferencesandindex. Identifiers:LCCN2021041859(print)|LCCN2021041860(ebook)|ISBN 9781009098168(hardback)|ISBN9781009099950(ebook) Subjects:LCSH:Topology. Classification:LCCQA611.D4762022(print)|LCCQA611(ebook)|DDC 514/.7–dc23/eng/20211029 LCrecordavailableathttps://lccn.loc.gov/2021041859 LCebookrecordavailableathttps://lccn.loc.gov/2021041860 ISBN978-1-009-09816-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pagexi Prelude xv 1 Basics 1 1.1 TopologicalSpace 1 1.2 MetricSpaceTopology 5 1.3 Maps,Homeomorphisms,andHomotopies 9 1.4 Manifolds 14 1.4.1 SmoothManifolds 16 1.5 FunctionsonSmoothManifolds 17 1.5.1 GradientsandCriticalPoints 17 1.5.2 MorseFunctionsandMorseLemma 20 1.5.3 ConnectiontoTopology 22 1.6 NotesandExercises 24 2 ComplexesandHomologyGroups 26 2.1 SimplicialComplex 27 2.2 Nerves,CˇechandRipsComplexes 31 2.3 SparseComplexes 33 2.3.1 DelaunayComplex 34 2.3.2 WitnessComplex 36 2.3.3 GraphInducedComplex 38 2.4 Chains,Cycles,Boundaries 43 2.4.1 AlgebraicStructures 43 2.4.2 Chains 45 2.4.3 BoundariesandCycles 46 2.5 Homology 49 2.5.1 InducedHomology 51 2.5.2 RelativeHomology 52 v vi Contents 2.5.3 SingularHomology 54 2.5.4 Cohomology 55 2.6 NotesandExercises 57 3 TopologicalPersistence 60 3.1 FiltrationsandPersistence 62 3.1.1 SpaceFiltration 62 3.1.2 SimplicialFiltrationsandPersistence 63 3.2 Persistence 68 3.2.1 PersistenceDiagram 70 3.3 PersistenceAlgorithm 76 3.3.1 MatrixReductionAlgorithm 80 3.3.2 EfficientImplementation 86 3.4 PersistenceModules 90 3.5 PersistenceforPL-Functions 95 3.5.1 PL-FunctionsandCriticalPoints 96 3.5.2 Lower-StarFiltrationandItsPersistentHomology 101 3.5.3 PersistenceAlgorithmforZerothPersistentHomology 104 3.6 NotesandExercises 108 4 GeneralPersistence 112 4.1 StabilityofTowers 113 4.2 ComputingPersistenceofSimplicialTowers 117 4.2.1 Annotations 117 4.2.2 Algorithm 118 4.2.3 ElementaryInclusion 119 4.2.4 ElementaryCollapse 121 4.3 PersistenceforZigzagFiltration 125 4.3.1 Approach 128 4.3.2 ZigzagPersistenceAlgorithm 131 4.4 PersistenceforZigzagTowers 134 4.5 LevelsetZigzagPersistence 137 4.5.1 SimplicialLevelsetZigzagFiltration 139 4.5.2 BarcodeforLevelsetZigzagFiltration 141 4.5.3 CorrespondencetoSublevelSetPersistence 143 4.5.4 CorrespondencetoExtendedPersistence 143 4.6 NotesandExercises 145 5 GeneratorsandOptimality 148 5.1 OptimalGenerators/Basis 150 5.1.1 GreedyAlgorithmforOptimalH (K)-Basis 151 p Contents vii 5.1.2 OptimalH (K)-BasisandIndependenceCheck 155 1 5.2 Localization 157 5.2.1 LinearProgram 159 5.2.2 TotalUnimodularity 161 5.2.3 RelativeTorsion 162 5.3 PersistentCycles 165 5.3.1 FiniteIntervalsforWeak(p+1)-Pseudomanifolds 167 5.3.2 AlgorithmCorrectness 172 5.3.3 Infinite Intervals for Weak (p+1)- Pseudomanifolds Embedded in Rp+1 174 5.4 NotesandExercises 175 6 TopologicalAnalysisofPointClouds 178 6.1 PersistenceforRipsandCˇechFiltrations 179 6.2 ApproximationviaDataSparsification 182 6.2.1 DataSparsificationforRipsFiltrationviaReweighting 183 6.2.2 ApproximationviaSimplicialTower 190 6.3 HomologyInferencefromPointCloudData 192 6.3.1 DistanceFieldandFeatureSizes 193 6.3.2 DataonaManifold 195 6.3.3 DataonaCompactSet 197 6.4 HomologyInferenceforScalarFields 198 6.4.1 ProblemSetup 199 6.4.2 InferenceGuarantees 201 6.5 NotesandExercises 204 7 ReebGraphs 207 7.1 ReebGraph:DefinitionsandProperties 208 7.2 AlgorithmsinthePL-Setting 211 7.2.1 AnO(mlogm)-TimeAlgorithmviaDynamic GraphConnectivity 213 7.2.2 A Randomized Algorithm with O(mlogm) ExpectedTime 217 7.2.3 HomologyGroupsofReebGraphs 220 7.3 DistancesforReebGraphs 223 7.3.1 InterleavingDistance 224 7.3.2 FunctionalDistortionDistance 226 7.4 NotesandExercises 229 viii Contents 8 TopologicalAnalysisofGraphs 233 8.1 TopologicalSummariesforGraphs 234 8.1.1 CombinatorialGraphs 235 8.1.2 GraphsViewedasMetricSpaces 236 8.2 GraphComparison 239 8.3 TopologicalInvariantsforDirectedGraphs 240 8.3.1 SimplicialComplexesforDirectedGraphs 241 8.3.2 PathHomologyforDirectedGraphs 243 8.3.3 Computationof(Persistent)PathHomology 245 8.4 NotesandExercises 252 9 Cover,Nerve,andMapper 255 9.1 CoversandNerves 257 9.1.1 SpecialCaseofH 261 1 9.2 AnalysisofPersistentH -Classes 265 1 9.3 MapperandMultiscaleMapper 268 9.3.1 MultiscaleMapper 271 9.3.2 Persistence of H -Classes in Mapper and 1 MultiscaleMapper 273 9.4 Stability 274 9.4.1 InterleavingofCoverTowersandMultiscaleMappers 275 9.4.2 (c,s)-GoodCovers 276 9.4.3 RelationtoIntrinsicCˇechFiltration 279 9.5 ExactComputationforPL-FunctionsonSimplicialDomains 281 9.6 ApproximatingMultiscaleMapperforGeneralMaps 283 9.6.1 CombinatorialMapperandMultiscaleMapper 284 9.6.2 AdvantageofCombinatorialMultiscaleMapper 285 9.7 NotesandExercises 286 10 DiscreteMorseTheoryandApplications 289 10.1 DiscreteMorseFunction 290 10.1.1 DiscreteMorseVectorField 292 10.2 Persistence-BasedDiscreteMorseVectorFields 295 10.2.1 Persistence-GuidedCancellation 295 10.2.2 Algorithms 298 10.3 StableandUnstableManifolds 303 10.3.1 MorseTheoryRevisited 303 10.3.2 (Un)StableManifoldsinDiscreteMorseVectorFields 304 10.4 GraphReconstruction 305 10.4.1 Algorithm 306 10.4.2 NoiseModel 308 Contents ix 10.4.3 TheoreticalGuarantees 309 10.5 Applications 313 10.5.1 RoadNetwork 313 10.5.2 NeuronNetwork 315 10.6 NotesandExercises 316 11 MultiparameterPersistenceandDecomposition 321 11.1 MultiparameterPersistenceModules 325 11.1.1 PersistenceModulesasGradedModules 325 11.2 PresentationsofPersistenceModules 328 11.2.1 PresentationandItsDecomposition 329 11.3 PresentationMatrix:DiagonalizationandSimplification 332 11.3.1 Simplification 333 11.4 TotalDiagonalizationAlgorithm 337 11.4.1 Running TOTDIAGONALIZE on the Working Example inFigure11.5 347 11.5 ComputingPresentations 350 11.5.1 GradedChain,Cycle,andBoundaryModules 350 11.5.2 Multiparameter Filtration, Zero-Dimensional Homology 353 11.5.3 Two-Parameter Filtration,Multi-Dimensional Homology 353 11.5.4 d-Parameter (d > 2) Filtration, Multi-DimensionalHomology 354 11.5.5 TimeComplexity 356 11.6 Invariants 356 11.6.1 RankInvariants 357 11.6.2 GradedBettiNumbersandBlockcodes 358 11.7 NotesandExercises 361 12 MultiparameterPersistenceandDistances 365 12.1 PersistenceModulesfromCategoricalViewpoint 367 12.2 InterleavingDistance 369 12.3 MatchingDistance 370 12.3.1 ComputingMatchingDistance 371 12.4 BottleneckDistance 374 12.4.1 IntervalDecomposableModules 376 12.4.2 BottleneckDistanceforTwo-ParameterInterval DecomposableModules 378 12.4.3 AlgorithmtoComputed forIntervals 383 I 12.5 NotesandExercises 386 x Contents 13 TopologicalPersistenceandMachineLearning 389 13.1 FeatureVectorizationofPersistenceDiagrams 390 13.1.1 PersistenceLandscape 391 13.1.2 PersistenceScaleSpaceKernel(PSSK) 393 13.1.3 PersistenceImages 394 13.1.4 PersistenceWeightedGaussianKernel(PWGK) 396 13.1.5 SlicedWassersteinKernel 398 13.1.6 PersistenceFisherKernel 399 13.2 OptimizingTopologicalLossFunctions 400 13.2.1 TopologicalRegularizer 401 13.2.2 GradientsofaPersistence-BasedTopologicalFunction 403 13.3 StatisticalTreatmentofTopologicalSummaries 405 13.4 BibliographicalNotes 408 References 411 Index 429

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.