ebook img

Computational Probability Applications PDF

258 Pages·2017·5.25 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Probability Applications

International Series in Operations Research & Management Science Andrew G. Glen Lawrence M. Leemis Editors Computational Probability Applications International Series in Operations Research & Management Science Volume247 SeriesEditor CamilleC.Price StephenF.AustinStateUniversity,TX,USA AssociateSeriesEditor JoeZhu WorcesterPolytechnicInstitute,MA,USA FoundingSeriesEditor FrederickS.Hillier StanfordUniversity,CA,USA Moreinformationaboutthisseriesathttp://www.springer.com/series/6161 Andrew G. Glen • Lawrence M. Leemis Editors Computational Probability Applications 123 Editors AndrewG.Glen LawrenceM.Leemis DepartmentofMathematics DepartmentofMathematics andComputerScience TheCollegeofWilliamandMary TheColoradoCollege Williamsburg,VA,USA ColoradoSprings,CO,USA ISSN0884-8289 ISSN2214-7934 (electronic) InternationalSeriesinOperationsResearch&ManagementScience ISBN978-3-319-43315-8 ISBN978-3-319-43317-2 (eBook) DOI10.1007/978-3-319-43317-2 LibraryofCongressControlNumber:2016960577 ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrors oromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface In the spring of 1994 at the College of William & Mary, we started work on a project that would end up being a long-lasting source of research. We explored the idea of combining a computer algebra system (Maple V at the time) and probability results to see if the computer could be useful in per- forming operations on random variables and finding new distributions. Over the next 4 years, a series of procedures written in Maple started to form its own programming language, soon to be called A Probability Programming Language (APPL). Furthermore, the language and the results that the lan- guage helped produce were starting to contribute to a field of research we called computational probability. The programAPPL, unlike statistical soft- ware that works ondata values, is designed to workon randomvariables and the various functions that describe their distribution. APPL helps derive dis- tributions of functions of random variables, probabilistic models, and other transformations. Soon after, Diane Evans joined the team and wrote proce- duresfordiscretedistributions.Thetwosetsofprocedureswereputtogether, and in a 2001 article in The American Statistician [60], the launch of this open-source software began. In 2008, John Drew, along with Evans, Glen, and Leemis, put together a monograph explaining the creation of APPL and some of the important re- sultsfromtheresearch.Thisbook,ComputationalProbability:Algorithmsand Applications in the Mathematical Sciences[46],establishedthestateofAPPL at the time, primarilyhow it evolvedandits majoralgorithms. Camille Price contacted us recently and requested that we update the original monograph and write a secondmonographthat summarizes some more recent work. The purpose of this, the second monograph,is twofold. First, we wantto combine in this one document some of the recent results that have come about with the language. Second, we want to inspire future users, professors, students, and researchers to bring APPL into their work, their classroom, and their mindset. Just as Word, Excel, LATEX, and PowerPoint are vital yet ubiqui- tous elements to many researchers, we hope that APPL will become such a V VI Preface research tool that enables a probabilist or statistician the ability to explore new ideas, methods, and models. Much of what is contained in the chapters that follow was published in journals over the last 20 years. Some of the works in the monograph are original efforts, yet to be published. These works highlight interesting exam- ples, often done by undergraduate students and graduate students, that can serveastemplates for future work.Eachchapteris astand-alonepublication, with the authors recognized, and a short description of the importance that APPL had in the research. Furthermore, as an open-source language, it sets the foundation for future algorithms to augment the original code. Some pa- pers heavily rely on APPL procedures; others enjoy the ease of use of data structures. Still others have added procedures to the base language. The editors would like to thank the many people who have contributed, supported, and encouraged this effort. Each chapter author clearly has been instrumental in furthering this cause, and they are recognized at the start of eachchapter.Manyfriendsandcolleagueshavealsobeenimmenselysupport- iveovertheyears.Wewouldespeciallyliketorecognizethelifelongsupportof ourwives,JillLeemisandLisaGlen,whohaveputupwithourwildideas,even though if often meant more work for them in other areas. Our children Lind- sey, Mark, Logan, Andrea, Rebecca, Mary, Grace, Gabriel, Anna, Michael, and Claire have all been supportive and patient “listeners” to their fathers. Our many colleagues over the years deserve our heartfelt thanks: Richard Bell, Roger Berger, Barry Bodt, Fr. Gabriel Costa, Kevin Cumminskey, Sam Ellis, James Fritz, Ben Garlick, Grant Hartman, Steven Horton, Ted Hro- madka, Michael Huber, Steven Janke, Rex Kincaid, Chris Marks, Joe Myers, BillPulleyblank,TessPowers,MatthewRobinson,MickSmith,AlexStodala, Rod Sturdivant, Fred Tinsley, Dave Webb, Chris Weld, Joanne Whitner, and Wei Yin-Loh. TheeditorsgratefullyacknowledgesupportfromtheArmyResearchOffice for providing funding in their grant number 67906-MA. Colorado Springs, CO, USA Andrew G. Glen Williamsburg, VA, USA Lawrence M. Leemis Contents 1 Accurate Estimation with One Order Statistic............. 1 1.1 Introduction ............................................ 2 1.2 The Case of the Exponential Distribution................... 3 1.3 An Example for the Exponential Distribution ............... 7 1.4 The Rayleigh and Weibull Distribution Extensions........... 9 1.5 Simulations and Computational Issues ..................... 11 1.6 Implications for Design of Life Tests ....................... 12 1.7 Conclusions............................................. 13 2 On the Inverse Gamma as a Survival Distribution ........ 15 2.1 Introduction ............................................ 16 2.2 Probabilistic Properties .................................. 17 2.3 Statistical Inference...................................... 22 2.3.1 Complete Data Sets ............................... 22 2.3.2 Censored Data Sets................................ 25 2.4 Conclusions............................................. 28 3 Order Statistics in Goodness-of-Fit Testing ............... 31 3.1 Introduction ............................................ 32 3.2 P-Vector ............................................... 33 3.3 Computation of the P-Vector ............................ 35 3.4 Goodness-of-Fit Testing .................................. 35 3.5 Power Estimates for Test Statistics ........................ 37 3.6 Further Research ........................................ 38 4 The “Straightforward” Nature of Arrival Rate Estimation? ............................................... 41 4.1 Introduction ............................................ 42 4.1.1 Sampling Plan 1: Time Sampling.................... 43 VII VIII Contents 4.1.2 Sampling Plan 2: Count Sampling ................... 44 4.1.3 Sampling Plan 3: Limit Both Time and Arrivals....... 47 4.2 Conclusions............................................. 49 5 Survival Distributions Based on the Incomplete Gamma Function Ratio ............................................ 51 5.1 Introduction ............................................ 51 5.2 Properties and Results ................................... 53 5.3 Examples............................................... 56 5.4 Conclusions............................................. 58 6 An Inference Methodology for Life Tests with Full Samples or Type II Right Censoring ...................... 59 6.1 Introduction and Literature Review........................ 60 6.2 The Methodology for Censored Data....................... 62 6.3 The Uniformity Test Statistic ............................. 63 6.4 Implementation Using APPL ............................. 64 6.5 Power Simulation Results................................. 66 6.6 Some Applications and Implications ....................... 67 6.7 Conclusions and Further Research ......................... 68 7 Maximum Likelihood Estimation Using Probability Density Functions of Order Statistics ..................... 75 7.1 Introduction ............................................ 75 7.2 MLEOS with Complete Samples........................... 77 7.3 Applying MLEOS to Censored Samples .................... 79 7.4 Conclusions and Further Research ......................... 85 8 Notes on Rank Statistics .................................. 87 8.1 Introduction ............................................ 88 8.2 Explanation of the Tests ................................. 89 8.3 Distribution of the Test Statistic Under H0 ................. 90 8.4 Wilcoxon Power Curves for n=2.......................... 91 8.5 Generalization to Larger Sample Sizes...................... 94 8.6 Comparisons and Analysis................................ 96 8.7 The Wilcoxon–Mann–Whitney Test........................ 98 8.8 Explanation of the Test .................................. 99 8.9 Three Cases of the Distribution of W Under H0 .............100 8.9.1 Case I: No Ties ...................................100 8.9.2 Case II: Ties Only Within Each Sample ..............102 8.9.3 Case III: Ties Between Both Samples ................104 8.10 Conclusions.............................................106 Contents IX 9 Control Chart Constants for Non-normal Sampling .......107 9.1 Introduction ............................................107 9.2 Constants d2, d3 ........................................108 9.3 Constants c4, c5 .........................................112 9.3.1 Normal Sampling..................................112 9.3.2 Non-normal Sampling..............................114 9.4 Conclusions.............................................116 10 Linear Approximations of Probability Density Functions..................................................119 10.1 Approximating a PDF ...................................119 10.2 Methods for Endpoint Placement..........................121 10.2.1 Equal Spacing ....................................121 10.2.2 Placement by Percentiles ...........................121 10.2.3 Curvature-Based Approach .........................122 10.2.4 Optimization-Based Approach ......................123 10.3 Comparison of the Methods...............................125 10.4 Application.............................................125 10.4.1 Convolution Theorem..............................126 10.4.2 Monte Carlo Approximation ........................126 10.4.3 Convolution of Approximate PDFs ..................128 10.5 Conclusions.............................................129 11 Univariate Probability Distributions ......................133 11.1 Introduction ............................................134 11.2 Discussion of Properties ..................................138 11.3 Discussion of Relationships ...............................140 11.3.1 Special Cases .....................................140 11.3.2 Transformations...................................140 11.3.3 Limiting Distributions .............................141 11.3.4 Bayesian Models ..................................141 11.4 The Binomial Distribution................................142 11.5 The Exponential Distribution .............................144 11.6 Conclusions.............................................146 12 Moment-Ratio Diagrams for Univariate Distributions......149 12.1 Introduction ............................................150 12.1.1 Contribution......................................152 12.1.2 Organization......................................152 12.2 Reading the Moment-Ratio Diagrams ......................153 12.3 The Skewness-Kurtosis Diagram...........................155 12.4 The CV-Skewness Diagram ...............................156 12.5 Application.............................................157 12.6 Conclusions and Further Research .........................160 X Contents 13 The Distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling Test Statistics for Exponential Populations with Estimated Parameters .....................................165 13.1 The Kolmogorov–SmirnovTest Statistic....................166 13.1.1 Distribution of D1 for Exponential Sampling..........167 13.1.2 Distribution of D2 for Exponential Sampling..........168 13.2 Other Measures of Fit....................................176 13.2.1 Distribution of W2 and A2 for Exponential 1 1 Sampling.........................................177 13.2.2 Distribution of W2 and A2 for Exponential 2 2 Sampling.........................................178 13.3 Applications ............................................181 14 Parametric Model Discrimination for Heavily Censored Survival Data .............................................191 14.1 Introduction ............................................192 14.2 Literature Review .......................................193 14.3 A Parametric Example...................................196 14.4 Methodology............................................197 14.4.1 Uniform Kernel Function...........................198 14.4.2 Triangular Kernel Function .........................203 14.5 Monte Carlo Simulation Analysis ..........................208 14.6 Conclusions and Further Work ............................210 15 Lower Confidence Bounds for System Reliability from Binary Failure Data Using Bootstrapping ...........217 15.1 Introduction ............................................217 15.2 Single-Component Systems ...............................218 15.3 Multiple-Component Systems .............................219 15.4 Perfect Component Test Results...........................224 15.5 Simulation..............................................230 15.6 Conclusions.............................................235 References.....................................................239 Index..........................................................249

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.