Computational Physics — 3rd/4th Year Option AngusMacKinnon September26,2002 Computational Physics Course Description Theuseofcomputersinphysics,aswellasmostotherbranchesofscienceandengineering,hasincreased manytimesalongwiththerapiddevelopmentoffasterandcheaperhardware.Thiscourseaimstogivethe studentathoroughgroundinginthemaincomputationaltechniquesusedinmodernphysics. Itisparticu- larlyimportantinthiscoursethatthestudentsshouldlearnbydoing.Thecourseisthereforedesignedsuch that a significant fraction ofthe students’time isspent actually programmingspecific physicalproblems ratherthanlearningabstracttechniques. T(cid:0) hecoursewillcoverproblemsin4(5)broadsections: (cid:0) Ordinarydifferentialequations,suchasthoseofclassicalmechanics. Partialdifferentialequations,suchasMaxwell’sequationsandtheDiffusionandSchro¨dingerequa- (cid:0) tions. Matrixmethods,suchassystemsofequationsandeigenvalueproblemsappliedtoPoisson’sequation (cid:0) andelectronicstructurecalculations. MonteCarloandothersimulationmethods,suchastheMetropolisalgorithmandmoleculardynam- (cid:0) ics. (Iftimepermits:)ComputerAlgebra;anintroductionusingMapletotheusesandabusesofalgebraic computinginphysics. Thisisnotashortcourseincomputingscience,norinprogramming.Itfocusesspecificallyonmethods forsolvingphysicsproblems.Studentswillbeexpectedtobefamiliarwithbasicprogramming:successful completionofthe1styearcomputingLab.issufficient. Thereisnorequirementthatthepracticalworkbe doneusingMicrosoftC++onthedepartmentalcomputers,butanyonewishingtousesomeotherprogram- minglanguageorcomputershouldconsultthelecturerbeforehand. Thisistomakesurethereisbothhelp availablefromdemonstratorsandthatitwillbepossibletoassesstheworksatisfactorily. Adetailedtimetableforthecourseisgivenbelow. Eachofthe4(5)sectionsofthecoursewillbeaccompaniedbyashortproblemsheetincludingpractical exercisesandlongerprojects. Studentswillbeexpectedtodothefirstprojectand2others.Therewillbeachoiceofprojectsavailable inthelatersections. Thisyearyouwillberequiredtosubmityourprogramelectronicallyinadditiontoincludingitasan appendix in your project reports. You should also include an example input file and the corresponding output file. This will enable the assessors to check and run your program if necessary. Your program shouldbesentasaplaintexte-mailattachment(s)1toComputational-Physics, A. MacKinnon orph.compphys@ic.ac.ukbythestateddeadline.Donotsendittomypersonale-mailaddress.The first project is to be handed in to Martin Morris in the Computing Lab by 5.00pm on the 28th October. (cid:1)(cid:3)(cid:2)(cid:5)(cid:4)(cid:7)(cid:6) Thesewillbeassessedandreturnedbythedemonstratorswhoshouldprovidethestudentswithfeedback whichwillbeofuseinthelongerprojectslateron. Thisprojectwillcountfor ofthefinalresult. 1UsingOutlookclick Insert then File 1 During the Lab. sessions staff and demonstrators will be available, but the students are expected to do the practical work and the problems outside these times as well. I am aware that there is an General Relativitylecturescheduledfor3.00pmonTuesdays.NeverthelesstheLab.willbereservedforthiscourse forthewholeafternoonanddemonstratorswillbeavailableduringthisperiod. Thereportonthe2ndproject,whichshouldbechosenfromthe2offeredonPartialDifferentialEqua- tions,shouldbesubmittedby5.00pmonNovember18th. The3rdprojectmaybechosenfromthoseofferedonMatrixandMonteCarlomethods(orpossiblyon ComputerAlgebra)andthereportshouldbesubmittedby5.00pmonFridayDecember13th,thelastday ofterm. This timetablehas beendesignedtomakesurethatstudentsareworkingatasteadyrateduring theterm. (cid:1)(cid:9)(cid:8)(cid:10)(cid:4)(cid:7)(cid:6) From10.00am–12.00noononMonday6thJanuary2003,therewillbeashortwrittentestunderexam (cid:1)(cid:11)(cid:8)(cid:10)(cid:4)(cid:12)(cid:6) conditions. This will count for of the final result. The 2nd and 3rd projects will also count for . Thusthedistributionofmarksforthevariouspartsofthecoursewillbeapproximately Project1 10 Project2 30 Project3 30 Test 30 Week Lectures Practicals Deadlines Sep. 30 Thu. 9.00am Fri. 2.00pm Fri. 4.00pm Oct. 7 Fri. 4.00pm Tue. 2.00–5.00pm Oct. 14 Fri. 4.00pm Tue. 2.00–5.00pm Oct. 21 Fri. 4.00pm Tue. 2.00–5.00pm Oct. 28 Fri. 4.00pm Tue. 2.00–5.00pm Mon. 5.00pm1stProject Nov.4 Tue. 2.00–5.00pm Nov.11 Thu. 9.00am Tue. 2.00–5.00pm Nov.18 Thu. 9.00am Tue. 2.00–5.00pm Mon. 5.00pm2ndProject Nov.25 Thu. 9.00am Tue. 2.00–5.00pm Dec. 2 Thu. 9.00am Tue. 2.00–5.00pm Dec. 9 Thu. 9.00am Tue. 2.00–5.00pm Fri. 5.00pm3rdProject Jan. 6 Test: Mon. 10.00am–12.00noon For those with surnames beginning with A–K the test will be in lecture theatre 2 and for those with surnamesbeginningwithL–Zinlecturetheatre3. Therewillbenoexaminationinthesummer. AcopyofthetimetableaswellascontactdetailsforthedemonstratorsispostedontheExchangeserver. ThiscanbeaccessedfromOutlookunder//PublicFolders/AllPublicFolders/Physics/ComputationalPhysics. FurtherinformationisavailableontheWorldWideWebunder http://www.cmth.ph.imperial.ac.uk/angus/Lectures/compphys/. Chapter 1 Ordinary Differential Equations 1.1 Types of Differential Equation In this chapter we will consider the methods of solution of the sorts of ordinary differential equations (ODEs)whichoccurverycommonlyinphysics. ByODEswemeanequationsinvolvingderivativeswith respect to a single variable, usually time. Although we will formulate the discussion in terms of linear ODEsforwhichweknowtheanalyticalsolution,thisissimplytoenableustomakecomparisonsbetween thenumericalandanalyticalsolutionsanddoesnotimplyanyrestrictiononthesortsofproblemstowhich themethodscanbeapplied.Inthepracticalworkyouwillencounterexampleswhichdonotfitneatlyinto thesecategories. Theworkin thissectionisalso consideredin chapter16ofPressetal. (1992)orchapterII ofPotter (1973) Weconsider3b(cid:13)(cid:15)a(cid:14) sicdifferentialequations: (cid:14)(cid:23)(cid:22) (cid:4) (cid:24) (cid:14)(cid:25)(cid:22)(cid:26)(cid:14)(cid:28)(cid:27)(cid:30)(cid:29) (cid:31)(cid:7)!#"%$ (cid:16)%& (cid:13)(cid:17)(cid:16)(cid:19)(cid:18)(cid:21)(cid:20) (cid:20) (cid:13)(cid:15)(cid:14) TheDecayequation (1.1) $ (cid:14)(cid:23)(cid:22) (cid:4) (cid:24) (cid:14)(cid:25)(cid:22)(cid:26)(cid:14)(cid:28)(cid:27)(cid:30)(cid:29) (cid:31)(cid:7)!#" (cid:16)%& (cid:13)(cid:17)(cid:16) (cid:20) (cid:18)’(cid:20) (cid:13)(cid:15)(cid:14) TheGrowthequation (1.2) (cid:14),(cid:22) (cid:4) (cid:24) (cid:14)(cid:25)(cid:22)(cid:26)(cid:14)(cid:28)(cid:27)(cid:30)(cid:29) (cid:31)(cid:7)!#".- (cid:16)%& (cid:13)(cid:17)(cid:16)(cid:19)((cid:21))+* )+* TheOscillationequation (1.3) whicharerepresentativeofmostmorecomplexcases. Higherorderdifferentialequationscanbereducedto1storderbyappropriatechoiceofadditionalvari- ables. Thesimplestsuchchoiceistodefinenewvariablestorepresentallbutthehighestorderderivative. Forexample,thedampedharmonicoscillato(cid:13)(cid:17)r0 (cid:14)equatio(cid:13)(cid:15)n(cid:14) ,usuallywrittenas / (cid:14)(cid:23)(cid:22) (cid:4) (cid:13)1(cid:16) 0 (cid:18)32 (cid:13)(cid:17)(cid:16)(cid:19)(cid:18)54 (1.4) (cid:14) (cid:22)(cid:26)(cid:13)(cid:15)(cid:14)17(cid:28)(cid:13)(cid:17)(cid:16) 6 canberewrittenintermsof andvelocity(cid:13) intheformofapairof1storderODEs 6 2 4 (cid:14)1(cid:22) (cid:4) (cid:13)(cid:17)(cid:16) (cid:18) / 6 (cid:18) / (cid:13)(cid:15)(cid:14) (1.5) $ (cid:22) (cid:4) (cid:13)1(cid:16) 6 (1.6) 8 8 Similarlyany thorderdifferentialequationcanbereducedto 1storderequations. (cid:14) Such systems of ODEs can be written6in a very concise notati8on by defining a vector, y say, whose elementsaretheunknowns,suchas and i(cid:13)n(1.1). AnyODEin unknownscanthenbewritteninthe generalform " (cid:16)%&;(cid:22) (cid:4) (cid:13)(cid:17)(cid:16)9(cid:18) : y f y (1.7) 3 OrdinaryDifferentialEquations 4 8 (cid:16) whereyandfare –componentvectors. Rememberthatthereisnosignificanceintheuseoftheletter intheaboveequations. Thevariableis notnecessarilytimebutcouldjustaseasilybespace,asin(1.9),orsomeotherphysicalquantity. Formallywecanwritethesolutionof(1.7)as "<(cid:16)%&;(cid:22) "<(cid:16) (cid:27) &=$3>3? " "<(cid:16)CBD& (cid:16)CBE&(cid:15)(cid:13)(cid:17)(cid:16)CB : y y ?A@ f y (1.8) (cid:16)%(cid:27)GFH(cid:16) "<(cid:16)%& by integrating both sides over the interval . Although (1.8) is formally correct, in practice it is usuallyimpossibletoevaluatetheintegralontheright–hand–sideasitpresupposesthesolutiony . We willhavetoemployanapproximation. (cid:16) (cid:16)I(cid:22) (cid:4) All differential equations require boundary conditions. Here we will consider cases in which all the (cid:16) boundary conditions are defined at a particular value of (e.g. ). For higher order equations th*e boundaryconditionsmaybedefinedatdifferentvaluesof . Themodesofaviolinstringatfrequency (cid:13)(cid:17)0J(cid:14) 0 obeytheequation (cid:22)L$ * (cid:14) (cid:13)1K 0 M 0 (cid:14)N(cid:22) (cid:4) (1.9) withboundaryconditionssuchthat atbothendsofthestring. We shallconsidersuchproblemsin chapter3. 1.2 Euler Method (cid:16)P(cid:22)(cid:26)(cid:16)RQ(cid:28)S=TU$V(cid:16)CQ O Consideranapproximatesolutionof(1.8)overasmallinterval bywritingtheintegralas > ?AWYX(cid:12)Z " "<(cid:16) B& (cid:16) B&(cid:17)(cid:13)(cid:17)(cid:16) B (cid:1) (cid:16) " "<(cid:16) Q & (cid:16) Q &\[ : O : ? W f y f y (1.10) "](cid:16)CQ(cid:28)S#TJ&U(cid:22) "](cid:16)CQ1&=$ (cid:16) " "<(cid:16)CQ(cid:17)& (cid:16)CQ1&^[ toobtain O : y y f y or,inamoreconcisenotation, Q(cid:10)S#T (cid:22) Q $ (cid:16) " Q (cid:16) Q &;(cid:22) Q $ (cid:16) Q [ O : O y y f y y f (cid:16) (1.11) O Wecanintegrateoveranylargerintervalbysubdividingtherangeintosectionsofwidth andrepeating (1.11)foreachpart. Equivalentlywecanconsiderthatweha(cid:13)veapproxQ(cid:28)iS=mTat$edQthederivativewithaforwarddifference (cid:1) [ (cid:13)(cid:17)(cid:16)=_Q (cid:16) y_ y O y _ (1.12) _ WewillalsocomeacrosscentredandbackwardQ(cid:28)S=diTff$ereQ(cid:7)nce(cid:30)eTs, (cid:13) c f (cid:16) (cid:13)(cid:17)(cid:16) _Q (cid:1)a‘b yQ $ OQ(cid:7)egyT centred y_ _ (cid:16) (1.13) _ bd y O y backward respectively. Q (cid:22) "<(cid:16)CQ(cid:17)& (cid:16) (cid:16)%Q(cid:23)(cid:22) (cid:16) Q (cid:22) " Q (cid:16)CQ(cid:17)& Herewehaveusedanotationwhichisveryc8goOmmonincomput:ationalphysics,inwhichwecalculate y y atdiscretevaluesof givenby ,andf f y . Inwhatfollowswewilldropthevectornotationyexceptwhenitisimportantforthediscussion. OrdinaryDifferentialEquations 5 1.2.1 OrderofAccuracy (cid:14)(cid:30)"<(cid:16)%& (cid:16) Q HowaccurateistheEulermethod? Toquantifyth(cid:13)(cid:17)i(cid:14)swecon(cid:16)s0id(cid:13)er0 (cid:14)aTaylorexpansionof around (cid:14) Q(cid:28)S=T (cid:22)h(cid:14) Q (cid:16) O [ [ [ (cid:18) O (cid:13)(cid:17)(cid:16) _Q (cid:18) f (cid:13)(cid:17)(cid:16) 0 _Q (cid:18) _ _ _ _ (1.14) _ _ andsubstitutethisinto(1.11) (cid:13)(cid:15)(cid:14) (cid:16)C0 (cid:13)(cid:17)0(cid:5)(cid:14) (cid:14) Q (cid:16) O [ [ [ (cid:1) (cid:14) Q $ (cid:16)%jk"A(cid:14) Q (cid:16) Q & (cid:18) O (cid:13)(cid:17)(cid:16)i_Q (cid:18) f (cid:13)(cid:17)(cid:16) 0 _Q (cid:18) O : _ _ _ _ (cid:13)(cid:15)(cid:14) (1.15) _ _ (cid:22)l(cid:14)(cid:10)Q (cid:16) (cid:18) O (cid:13)(cid:17)(cid:16) _Q : _ _ (1.16) _ (cid:16) O wherewehaveused(1.7)toobtainthefinalform. Hence,weseethatthetermin intheexpansionhas beencorrectlyreproducedbytheapproximation,butthatthehigherorderQ termsarewrong. Wetherefore (cid:16) describetheEulermethodas1storder8accurate. O Anapproximationtoaquantityis thorderaccurateifthetermin intheTaylorexpansionofthe quantityis correctlyreproduced. The orderofaccuracyofa method is theorder ofaccuracywith which theunknownisapproximated. Notethatthetermaccuracyhasaslightlydifferentmeaninginthiscontextfromthatwhichyoumight use to describethe resultsofan experiment. Sometimesthe term orderof accuracyisused to avoidany ambiguity. (cid:16)%0 TheOleading order deviation is called the truncation error. Thus in (1.2.1) the truncation error is the termin . 1.2.2 Stability TheEulermethodis1storderaccurate. Howeverthereisanotherimportantconsiderationinanalysingthe method: stability. Let us suppose that at some time the actual numerical solution deviates from the true (cid:14) solutionOofthedifferenceequation(1.11)(N.B.nottheoriginaldifferentialequation(1.7))bysomesmall amount ,due,forexample,tothefiniteaccuracyofthecomputer.Thejnaddingthisinto(1.11)gives (cid:14)(cid:10)Q(cid:28)S#T (cid:14)(cid:10)Q(cid:28)S#Tm(cid:22)(cid:26)(cid:14)(cid:10)Q (cid:14)nQo$ (cid:16)qp<jk"<(cid:14)(cid:10)Q (cid:16)CQ(cid:17)& (cid:14)(cid:10)Qnt (cid:18) O (cid:18) O O : (cid:18)sr (cid:14) _Q O : _ r _ (1.17) _ jk"A(cid:14) (cid:16)%& (cid:14) uv : (cid:14) wheretheterminbrackets,O , istheTaylorexpansionof j withrespectto . Subtracting(1.11)we obtainalinearequationfor (cid:14) Q(cid:28)S#T (cid:22) p (cid:2) $ (cid:16) t (cid:14) Q O O r (cid:14)w_Q O : _ r _ (1.18) _ whichitisconvenienttowriteintheform (cid:14)(cid:10)Q(cid:10)S#Tm(cid:22)lx (cid:14)(cid:10)Qy[ O O x (cid:14)(cid:7)Q (1.19) O 8 x (cid:2) If has a magnitude greater than one then will tend to grow with increaz siz(cid:7)n{g and may eventually dominateovertherequiredsolution. HencetheEulermejthodisstableonlyif or $ (cid:2) (cid:2) $ (cid:16) (cid:2) [ { O r (cid:14) { (cid:18) r (1.20) (cid:16) O (cid:16) As ispositivebydefinitionthe2O ndinequalityimpliesthatthederivativemustalsobepositive. The1st inequalityleadstoarestrictionon ,namely j (cid:16) f 7 [ O { r (cid:14) r (1.21) OrdinaryDifferentialEquations 6 x z z x 0 (cid:2) When thederivativeis complexmoz rez c{are is requiredin the calculation of . Inthiscaseit is easierto lookforsolutionsofthecondition . F(cid:2)orthe(cid:16) 0osc0illati(cid:2)onequation(1.1c)theconditionbecomes (cid:18) O * { (cid:16) (1.22) O * which is impossible to fulfil for real and . Comparing these result with our 3 types of differential equations(1.1)wefindthefollowingstabilityconditions (cid:16) f 7 DO ec{ ay (cid:20) Growth Oscillation unstable unstable TheEulermethodisconditionallystableforthedecayequation. Amethodisstableifasmalldeviationfrom thetruesolutiondoesnottendtogrowas thesolutionis iterated. 1.2.3 TheGrowthEquation Actually,ouranalysisdoesn’tmaketoomuchsenseinthecaseofthegrowthequationasthetruesolution (cid:14) Q(cid:15)|\Q (cid:14) Q |JQ shouldgrowanyway. Amore sensibleconditionwouO ld bethatthe relativeerrorin thesolution doesnot grow. Thiscanbeachievedbysubstituting for aboveandlookingfortheconditionthat does notgrow.Wewillnottreatthiscasefurtherherebutitis,infact,veryimportantinproblemssuchaschaos, inwhichsmallchangesintheinitialconditionsleadtosolutionswhichdivergefromoneanother. 1.2.4 ApplicationtoNon–LinearDifferential Equations Thelinear–differentialequationsinphysicscanoftenbesolvedanalyticallywhereasmostnon–linearones can only be solvednumerically. It is importanttherefore to be able to apply the ideas developedhereto suchcases. (cid:13)(cid:17)(cid:14) Considerthesimpleexample (cid:14) 0 (cid:22) (cid:4) [ (cid:13)(cid:17)(cid:16)(cid:19)(cid:18)(cid:21)(cid:20) jk"A(cid:14) (cid:16)%&,(cid:22) (cid:14)(cid:15)0 jg7 (cid:14)}(cid:22) f (cid:14) (1.23) : (cid:20) (cid:20) r r In this case and which can be substituted into (1.21) to give the stability (cid:16) (cid:2) 7(cid:17)" (cid:14)(cid:15)& condition O { (cid:20) : (cid:14) (1.24) (cid:14) (cid:16) which depends on , unlike the simpler cases. In writing a program to solOve such an equation it may therefore be necessary to monitor the value of the solution, , and adjust as necessary to maintain stability. 1.2.5 ApplicationtoVector Equations O 7 (cid:127) Alittlemorecareisrequiredwhenyandfare~#ve(cid:127)(cid:129)(cid:128)ctors. Inthiscase yisanarbitraryinfinitesimalvector r r (cid:128) andthederivative f yisamatrixFwithcomponentsj (cid:22) (cid:127) (cid:128) r (cid:14) r (1.25) j (cid:14) (cid:127) (cid:127) (cid:127) (cid:128) (cid:128) inwhich and representthecompQ(cid:28)oS#nT(cid:132)e(cid:131) ntsoffQ(cid:28)a(cid:131) ndyre(cid:128)spectjively.HeQ(cid:28)n(cid:131) ce(1.18)takestheform (cid:14)y(cid:130) (cid:22) (cid:14)y(cid:130) $ (cid:16)(cid:17)(cid:133) (cid:14)y(cid:130) O O O r (cid:14) _Q O _ r _ (1.26) Q(cid:28)S#T (cid:22) $ (cid:16) Q (cid:22) _ Q [ O u O v(cid:134)O O y I F y G y (1.27) This leads directly to the stability condition that all the eigenvalues of G must have modulus less than unity(seeproblem6). Ingeneralanyofthestabilityconditionsderivedinthiscourseforscalarequationscanbere–expressed inaformsuitableforvectorequationsbyapplyingittoalltheeigenvaluesofanappropriatematrix. OrdinaryDifferentialEquations 7 1.3 The Leap–Frog Method How can we improve on the Euler method? The most obvious way would be to replace the forward differencein(1.12)withacentreddifferQ(cid:10)enS#cT e(cid:22)(1.1Q(cid:7)3e(cid:30))Tto$ gfet(cid:16)th"efQor(cid:16)%m&\[ula O : y y f y (1.28) Q(cid:28)S#T Q(cid:7)egT Ifweexpandbothy andy (cid:13)(cid:17)(cid:14) asinsec(cid:16)C0tio(cid:13)1n0J1(cid:14) .2.1(1.2(cid:16)C8(cid:135) )(cid:13)(cid:17)b(cid:135)(cid:5)e(cid:14)comes (cid:14)(cid:10)Q (cid:16) O O [(cid:5)[ [ (cid:18) O (cid:13)(cid:17)(cid:16)i_Q (cid:18) f (cid:13)(cid:17)(cid:16) 0 _Q (cid:18) (cid:136) (cid:13)(cid:17)(cid:16) (cid:135) _Q (cid:18) _ _ _ _ _ _ (cid:13)(cid:15)_(cid:14) (cid:16)C0 (cid:13)(cid:17)0 _(cid:14) (cid:16)C(cid:135) (cid:13)1(cid:135)J_(cid:14) (cid:22)(cid:26)(cid:14)(cid:10)Qo$ (cid:16) O $ O [ [ [(cid:12)$ f (cid:16)%j(cid:137)Q O (cid:13)1(cid:16)P_Q (cid:18) f (cid:13)1(cid:16) 0 _Q (cid:136) (cid:13)(cid:17)(cid:16) (cid:135) _Q (cid:18) O _ _ _ (cid:13)(cid:15)(cid:14) __ (cid:16)C0 (cid:13)(cid:17)0 (cid:14) __ (cid:16)C(cid:135) (cid:13)1(cid:135)J(cid:14) __ (1.29) (cid:22)(cid:26)(cid:14)(cid:10)Q (cid:16) O $ O [ [ [ (cid:18) O (cid:13)1(cid:16)P_Q (cid:18) f (cid:13)1(cid:16) 0 _Q (cid:136) (cid:13)(cid:17)(cid:16) (cid:135) _Q (cid:18) _ _ _ _ _ _ (1.30) _ _ _ (cid:16) 0 O (cid:14)(cid:12)Q (cid:14)(cid:7)Q (cid:14)(cid:10)Q(cid:7)egT from which allterms up to cancelso that the method is clearly2nd order accurate. Note in passing (cid:14)(cid:12)Q(cid:28)S#T that using(1.28) 2 consecutivevaluesof are requiredin orderto calculatethenextone: and arerequiredtocalculate . Hence2boundaryconditionsarerequired,eventhough(1.28)wasderived from a 1st order differential equation. This so–called leap–frog method is more accurate than the Euler (cid:14)nQ method, but is it stable? ROepeating the same analysis (section 1.2.2) as for the Euler method we again obtainalinearequationfor j (cid:14)(cid:10)Q(cid:10)S#Tm(cid:22) (cid:14)nQ(cid:7)e(cid:30)TU$ f (cid:16) (cid:14)(cid:10)Qy[ O O O r (cid:14) _Q O _ r _ (1.31) _ (cid:14)nQ(cid:23)(cid:22)(cid:138)x (cid:14)(cid:10)Q(cid:7)egT (cid:14)nQ(cid:28)S#Tm(cid:22)hx(cid:7)0 (cid:14)(cid:10)Q(cid:7)e(cid:30)T O O O O Weanalysethisequationbywriting and j toobtain x 0 (cid:22) (cid:2) $ f (cid:16) x O r (cid:14)w_Q _ r _ (1.32) _ j j 0 whichhasthesolutions x,(cid:22) (cid:16) (cid:16) (cid:2) [ O r (cid:14) ((cid:26)(cid:139) (cid:140) O r (cid:14);(cid:141) (cid:18) r r (1.33) $ (cid:2) (cid:2) The product of the 2 solutions is equal to the constant in th(cid:142)e quadratic equation, i.e. . Since the 2 x (cid:2) solutions are different, one of them always has magnitude .z Szwin(cid:142) ce for a small random error it is impossible to guarantee that there will be no contribution with this contribution will tend to dominateastheequationisiterated.Hencethemethodisunstable. Thereisanimportantexceptiontothisinstability: whenthepartialderivativeispurelyimaginary(but x jg7 (cid:14)(cid:143)(cid:22) notwhenithassomegeneralcomplexvalue),thequantityunderthesquarerootin(1.33)canbe((cid:144)ne)(cid:145)*gative r r and both ’s have modulus unity. Hence, for the case of oscillation (1.1c) where , the (cid:16) (cid:2) 7 [ algorithmisjuststable,aslongas O { * (1.34) Thestabilitypropertiesoftheleap–frogmethodaresummarisedbelow (cid:16) (cid:2) 7 Decay Growth OO sc{ illati*on unstable unstable Againthegrowthequationshouldbeanalysedsomewhatdifferently. OrdinaryDifferentialEquations 8 1.4 The Runge–Kutta Method So far we have found one method which is stable for the decay equation and another for the oscillatory equation.Canwecombinetheadvantagesofboth? T Asapossiblecompromisecons(cid:14)(cid:15)iQ(cid:10)BdS#erT(cid:132)(cid:146)the(cid:22)(cid:26)fo(cid:14)(cid:10)lQolow$ ing(cid:16)%tjkw"Ao(cid:14)(cid:10)Qste(cid:16)CpQ(cid:17)a& lgorithm(ignoringvectors) 0 0 O : (cid:14)(cid:10)Q(cid:28)S#Tm(cid:22)(cid:26)(cid:14)(cid:10)Qo$ O (cid:16)%jk"<(cid:14)(cid:7)Q(cid:28)B S#TR(cid:146) 0 : (cid:16) Q(cid:10)S#T(cid:132)(cid:146) 0 &\[ (1.35) (cid:14) Q(cid:28)B S#TR(cid:146) (1.36) 0 Inpracticetheintermediatevalue isdiscardedaftereachstep. Weseethatthismethodconsistsof anEuler(seesection1.2)stepfollowedbyaLeap–Frog(seesection1.3)step. Thisiscalledthe2ndorder Runge–Kuttaortwo–stepmethod.Itisinfactoneofahierarchyofrelatedmethodsofdifferentaccuracies. Thestabilityanalysisfor(1.4)iscarriedoutinthj esamT ewayjasb0\e(cid:149) fore.Herewesimplyquotetheresult (cid:14) Q(cid:28)S#T (cid:22)(cid:148)(cid:147) (cid:2) $ (cid:16) (cid:16) (cid:14) Q [ O O r (cid:14) (cid:18) 0 (cid:140) O r (cid:14);(cid:141) O r r (1.37) jg7 (cid:14) (cid:16) r r Inderivingthisresultitisnecessarytoassumethatthederivatives, areindependentof . Thisisnot usuallyaproblem. From(1.37)weconcludethestabilityconditions T (cid:16) f 7 (cid:2) " (cid:16) & (cid:150) (cid:2) DO ec{ ay (cid:20) Growth Os(cid:18) cil(cid:150)laOtio*n { unstable (cid:16)(cid:23)(cid:151) (cid:2) Notethatintheoscillatorycasethemeth*oOdisstrictlyspeakingunstablebuttheeffectissosmallthat it can be ignored in most cases, as long as . This method is often used for damped oscillatory equations. 1.5 The Predictor–Corrector Method This method is very similar to and often confused with the Runge–Kutta (see section 1.4) method. We T considersubstitutingthetrapezQ(cid:10)oS#idTal(cid:22) rulQef$orth(cid:16);e(cid:152)es"tiQ(cid:28)mS#aTte(cid:16)CoQ(cid:28)fS#tT h&einte" gQral(cid:16)CQ1in&C(cid:153)#(1[ .8)toobtaintheequation 0(cid:12)O : (cid:18) : y y f y f y (1.38) Q(cid:28)S#T Unfortunately the presence of y on the right hand side makes a direct solution of (1.38) impossible exceptforspecialcases(sees(cid:14)eQ(cid:10)BctS#ioT n(cid:22)h1.(cid:14)n6Q(cid:19))b$ elo(cid:16)%wjk."A(cid:14)(cid:10)AQ p(cid:16)CoQ(cid:17)s&siblecompromiseisthefollowingmethod OT : (cid:14) Q(cid:10)S#T (cid:22)h(cid:14) Q $ (cid:16) (cid:152)jk"<(cid:14) Q(cid:28)B S#T (cid:16) Q(cid:28)S#T jk"A(cid:14) Q (cid:16) Q & (cid:153) [ 0 O : (cid:18) : (1.39) (cid:14)(cid:12)Q(cid:28)S=T (1.40) This method consists of a guess for based on the Euler (see section 1.2) method (the Prediction) followedbyacorrectionusingthetrapezoidalruletosolvetheintegralequation(1.8). Theaccuracyand stabilitypropertiesareidenticaltothoseoftheRunge–Kuttamethod. 1.6 The Intrinsic Method Returning to the possibility of solving the integral equation(1.8) using the trapezoidal or trapezium rule (1.38),letusconsiderthecaseofalineardifferentiTalequation,suchasourexamples(1.1). Forthedecay (cid:14)(cid:10)Q(cid:28)S=Tm(cid:22)h(cid:14)(cid:10)Qo$ (cid:16) (cid:14)(cid:10)Q(cid:10)S#T (cid:14)(cid:10)Q equationwehave 0 O u(cid:20) (cid:18)(cid:21)(cid:20) v (1.41) OrdinaryDifferentialEquations 9 (cid:14)(cid:12)Q(cid:10)S#T (cid:14)nQ T whichcanberearrangedintoanexplicitequationf(cid:2) o$r (cid:16)g(cid:154) asafunctionof (cid:14) Q(cid:28)S#T (cid:22) p 0T O (cid:20) t (cid:14) Q [ (cid:2) (cid:16)g(cid:154) (cid:18) 0(cid:12)O (cid:20) (1.42) x This intrinsicmethod is2nd order accurate asthat is the accuracyofthe trapezoidalrule for integration. (cid:151) (cid:2) Whataboutthestability? Applyinguv thesamemethodologyasbeforewefindthatthecrucialquantity, ,is F theexpressioninsquarebrackets, ,in(1.42)w(cid:20)hhic(cid:155) hi((cid:144)sa)+*lways forthedecayequationandhasmodulus unityintheoscillatorycase(aftersubstituting ). Henceitisstableinbothcases. Whyisitnot usedinsteadoftheothermethods? Unfortunatelyonlyasmallgroupofequations,suchasourexamples, canberearrangedinthisway.Fornon–linearequationsitmaybeimpossible,andevenforlinearequations when y is a vector, there may be a formal solution which is not useful in practice. It is always possible to solve the resulting non–linear equation iteratively, using (e.g. ) Newton–Raphson iteration, but this is usuallynotworthwhileinpractice. Infacttheintrinsicmethodisalsostableforthegrowthequationwhenitisanalysedasdiscussedearlier (section1.2.3),sothatthemethodisinfactstableforall3classesofequations. Decay Growth Oscillation stable stable stable 1.7 Summary Inthesenoteswehaveintroducedsomemethodsforsolvingordinarydifferentialequations. However,by farthemostimportantlessontobelearnedisthattobeusefulamethodmustbebothaccurateandstable. The latter condition is often the most difficult to fulfil and careful analye(cid:30)sTis of the equations to be solved (cid:16) (cid:16) maybenecessarybeforechoosinganappropriatemethodtousefOor{fin*dinganumericalsolution. O Thestabilityconditionsderivedabovetendtohavetheform whichmaybeinterpretedas (cid:16) shouldbelessthanthecharacteristicperiodofoscillation.OThisconformswithcommonsense. Infactwe canwritedownamoregeneralcommonsensecondition: shouldbesmallcomparedwiththesmallest timescalepresentintheproblem. Finally, many realistic problems don’tfall into the neat categories of (1.1). The simplest example is a damped harmonic oscillator. Often it is difficult to find an exact analytical solution for the stability condition. Itpaysinsuchcasestoconsidersomeextremeconditions,suchas(e.g.) veryweakdamping (cid:14) or very strong damping, work out the conditions for these cases and simply choose the most stringent condition. Innon–linearproblemsthecaseswhentheunknown, ,isverylargeorverysmallmayprovide tractablesolutions. 1.8 Problems 1. Write down definitions of the terms order of accuracy, truncation error, conditional stability as appliedtothenumericalsolutionofordinarydifferentialequations. 2. Writedown1storderaccurate(cid:13)1fijnitediffer(cid:13)(cid:17)e0Ynjceapprox(cid:13)(cid:17)im(cid:135)(cid:5)jationsfor j (cid:13)(cid:17)K (cid:13)(cid:17)K 0 (cid:13)(cid:17)K (cid:135) r (cid:16) r K a) b) c) d) r r (cid:14) Q(cid:28)S=T (cid:14) Q M (cid:14) Q(cid:15)e(cid:30)T (cid:14) (cid:14) Q (cid:156) (cid:18)(cid:158)(cid:157) (cid:18) Hint:theresulthastobesomethinglike .Expandthe saround andchoose thecoefficientstoeliminatecontributionsfromunwantedtermsintheexpansion. j N.B.Thisquestionreferstotheaccuracyoftheapproximationforthederivativesgiven,nottothe accuracyof .