ebook img

Computational Physics PDF

331 Pages·2018·31.617 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Physics

MichaelBestehorn ComputationalPhysics Also of Interest ComputationalPhysics.MitBeispieleninFortranundMatlab MichaelBestehorn,2016 ISBN978-3-11-037288-5,e-ISBN(PDF)978-3-11-037303-5, e-ISBN(EPUB)978-3-11-037304-2 BiomedicalImaging.PrinciplesofRadiography,Tomographyand MedicalPhysics TimSalditt,TimoAspelmeier,SebastianAeffner,2017 ISBN978-3-11-042668-7,e-ISBN(PDF)978-3-11-042669-4, e-ISBN(EPUB)978-3-11-042351-8 DynamicsofSolidStructures.MethodsusingIntegrodifferential Relations GeorgyViktorovichKostin,VasilyV.Saurin,2017 ISBN978-3-11-051623-4,e-ISBN(PDF)978-3-11-051644-9, e-ISBN(EPUB)978-3-11-051625-8 ComputationalPhysicsofElectricDischargesinGasFlows SergeyT.Surzhikov,2012 ISBN978-3-11-027033-4,e-ISBN(PDF)978-3-11-027041-9 ComputationalSciences PonnaduraiRamasami(Ed.),2017 ISBN978-3-11-046536-5,e-ISBN(PDF)978-3-11-046721-5, e-ISBN(EPUB)978-3-11-046548-8 Michael Bestehorn Computational Physics | With Worked Out Examples in FORTRAN® and MATLAB® PhysicsandAstronomyClassificationScheme2010 05.10.Ln,05.45.-a,05.65.+b,07.05.Mh,44.05.+e,45.10.-b,47.11.-j,47.85.-g Author Prof.Dr.MichaelBestehorn BTUCottbus-Senftenberg Dept.ofStatisticalPhysicsandNonlinearDynamics Erich-Weinert-Str.1 03046Cottbus Germany [email protected] ISBN978-3-11-051513-8 e-ISBN(PDF)978-3-11-051514-5 e-ISBN(EPUB)978-3-11-051521-3 LibraryofCongressControlNumber:2018934247 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2018WalterdeGruyterGmbH,Berlin/Boston Coverimage:MichaelBestehorn Typesetting:le-texpublishingservicesGmbH,Leipzig Printingandbinding:CPIbooksGmbH,Leck ♾Printedonacid-freepaper PrintedinGermany www.degruyter.com Contents 1 Introduction|1 1.1 Goal,contents,andoutline|1 1.2 Theenvironmentrequiredforprogramdevelopment|4 1.2.1 Operatingsystem|4 1.2.2 Softwarepackages|5 1.2.3 Graphics|5 1.2.4 Programdevelopmentandasimplescript|6 1.3 Afirstexample–thelogisticmap|7 1.3.1 Map|7 1.3.2 FORTRAN|8 1.3.3 Problems|11 2 Nonlinearmaps|12 2.1 Frenkel–Kotorovamodel|12 2.1.1 Classicalformulation|12 2.1.2 Equilibriumsolutions|13 2.1.3 Thestandardmap|13 2.1.4 Problems|14 2.2 ChaosandLyapunovexponents|15 2.2.1 Stability,butterflyeffect,andchaos|15 2.2.2 Lyapunovexponentofthelogisticmap|16 2.2.3 Lyapunovexponentsformultidimensionalmaps|17 2.3 Affinemapsandfractals|20 2.3.1 Sierpinskitriangle|22 2.3.2 Aboutfernsandotherplants|23 2.3.3 Problems|24 2.4 Fractaldimension|25 2.4.1 Box-counting|25 2.4.2 Application:Sierpinskitriangle|26 2.4.3 Problem|27 2.5 Neuralnetworks|27 2.5.1 Perceptron|28 2.5.2 Self-organizedmaps:Kohonen’smodel|34 2.5.3 Problems|39 3 Dynamicalsystems|40 3.1 Quasilineardifferentialequations|40 3.1.1 Example:logisticmapandlogisticODE|41 3.1.2 Problems|42 VI | Contents 3.2 Fixedpointsandinstabilities|43 3.2.1 Fixedpoints|43 3.2.2 Stability|43 3.2.3 Trajectories|44 3.2.4 Gradientdynamics|45 3.2.5 SpecialcaseN=1|45 3.2.6 SpecialcaseN=2|45 3.2.7 SpecialcaseN=3|47 3.3 Hamiltoniansystems|50 3.3.1 Hamiltonfunctionandcanonicalequations|50 3.3.2 Symplecticintegrators|51 3.3.3 Poincarésection|56 4 OrdinarydifferentialequationsI|58 4.1 Newton’smechanics|58 4.1.1 Equationsofmotion|58 4.1.2 Themathematicalpendulum|59 4.2 Numericalmethodsofthelowestorder|60 4.2.1 Eulermethod|60 4.2.2 NumericalstabilityoftheEulermethod|60 4.2.3 Implicitandexplicitmethods|63 4.3 Higherordermethods|64 4.3.1 Heun’smethod|64 4.3.2 Problems|67 4.3.3 Runge–Kuttamethod|67 4.4 RK4applications:celestialmechanics|73 4.4.1 Keplerproblem:closedorbits|73 4.4.2 Quasiperiodicorbitsandapsidalprecession|76 4.4.3 Multipleplanets:isoursolarsystemstable?|76 4.4.4 Thereducedthree-bodyproblem|79 4.4.5 Problems|86 4.5 Moleculardynamics(MD)|86 4.5.1 Classicalformulation|86 4.5.2 Boundaryconditions|87 4.5.3 Microcanonicalandcanonicalensemble|88 4.5.4 Asymplecticalgorithm|89 4.5.5 Evaluation|90 4.5.6 Problems|94 4.6 Chaos|95 4.6.1 Harmonicallydrivenpendulum|95 4.6.2 Poincarésectionandbifurcationdiagrams|97 Contents | VII 4.6.3 Lyapunovexponents|98 4.6.4 Fractaldimension|106 4.6.5 Reconstructionofattractors|109 4.7 ODEswithperiodiccoefficients|111 4.7.1 Floquettheorem|111 4.7.2 Stabilityoflimitcycles|112 4.7.3 Parametricinstability:pendulumwithanoscillatingsupport|112 4.7.4 Mathieuequation|114 4.7.5 Problems|116 5 OrdinarydifferentialequationsII|117 5.1 Preliminaryremarks|117 5.1.1 Boundaryconditions|117 5.1.2 Example:ballisticflight|118 5.2 Finitedifferences|118 5.2.1 Discretization|119 5.2.2 Example:Schrödingerequation|122 5.3 Weightedresidualmethods|128 5.3.1 Weightandbasefunctions|128 5.3.2 Example:Starkeffect|130 5.4 Nonlinearboundaryvalueproblems|132 5.4.1 Nonlinearsystems|132 5.4.2 Newton–Raphson|133 5.4.3 Example:thenonlinearSchrödingerequation|134 5.4.4 Example:amoonshot|136 5.5 Shooting|140 5.5.1 Themethod|140 5.5.2 Example:freefallwithquadraticfriction|141 5.5.3 Systemsofequations|142 5.6 Problems|143 6 PartialdifferentialequationsI,basics|144 6.1 Classification|144 6.1.1 PDEsofthefirstorder|144 6.1.2 PDEsofthesecondorder|147 6.1.3 Boundaryandinitialconditions|149 6.2 Finitedifferences|153 6.2.1 Discretization|153 6.2.2 EllipticPDEs,example:Poissonequation|156 6.2.3 ParabolicPDEs,example:heatequation|162 6.2.4 HyperbolicPDEs,example:convectionequation,waveequation|167 VIII | Contents 6.3 Alternativediscretizationmethods|173 6.3.1 Chebyshevspectralmethod|173 6.3.2 SpectralmethodbyFouriertransformation|178 6.3.3 Finite-elementmethod|182 6.4 NonlinearPDEs|186 6.4.1 RealGinzburg–Landauequation|186 6.4.2 Numericalsolution,explicitmethod|188 6.4.3 Numericalsolution,semi-implicitmethod|189 6.4.4 Problems|190 7 PartialdifferentialequationsII,applications|193 7.1 Quantummechanicsinonedimension|193 7.1.1 Stationarytwo-particleequation|193 7.1.2 Time-dependentSchrödingerequation|196 7.2 Quantummechanicsintwodimensions|202 7.2.1 Schrödingerequation|202 7.2.2 Algorithm|202 7.2.3 Evaluation|203 7.3 Fluidmechanics:flowofanincompressibleliquid|204 7.3.1 Hydrodynamicbasicequations |204 7.3.2 Example:drivencavity|206 7.3.3 Thermalconvection:(A)squaregeometry|211 7.3.4 Thermalconvection:(B)Rayleigh–Bénardconvection|218 7.4 Patternformationoutofequilibrium|225 7.4.1 Reaction-diffusionsystems|225 7.4.2 Swift–Hohenbergequation|234 7.4.3 Problems|238 8 MonteCarlomethods(MC)|240 8.1 Randomnumbersanddistributions|240 8.1.1 Randomnumbergenerator|240 8.1.2 Distributionfunction,probabilitydensity,meanvalues|241 8.1.3 Otherdistributionfunctions|242 8.2 MonteCarlointegration|245 8.2.1 Integralsinonedimension|245 8.2.2 Integralsinhigherdimensions|247 8.3 Applicationsfromstatisticalphysics|250 8.3.1 Two-dimensionalclassicalgas|250 8.3.2 TheIsingmodel|255 8.4 Differentialequationsderivedfromvariationalproblems|265 8.4.1 Diffusionequation|265 8.4.2 Swift–Hohenbergequation|267 Contents | IX A Matricesandsystemsoflinearequations|270 A.1 Realmatrices|270 A.1.1 Eigenvaluesandeigenvectors|270 A.1.2 Characteristicpolynomial|270 A.1.3 Notations|271 A.1.4 Normalmatrices|271 A.2 Complexmatrices|272 A.2.1 Notations|272 A.2.2 Jordancanonicalform|273 A.3 Inhomogeneoussystemsoflinearequations|274 A.3.1 Regularandsingularsystemmatrices|274 A.3.2 Fredholmalternative|275 A.3.3 Regularmatrices|275 A.3.4 LUdecomposition|276 A.3.5 Thomasalgorithm|278 A.4 Homogeneoussystemsoflinearequations|279 A.4.1 Eigenvalueproblems|279 A.4.2 Diagonalization|279 A.4.3 Application:zerosofapolynomial|282 B Programlibrary|284 B.1 Routines|284 B.2 Graphics|285 B.2.1 init|285 B.2.2 contur|285 B.2.3 contur1|285 B.2.4 ccontu|286 B.2.5 image|286 B.2.6 ccircl|286 B.3 Runge–Kutta|286 B.3.1 rkg|286 B.3.2 drkg|287 B.3.3 drkadt|287 B.4 Miscellaneous|287 B.4.1 tridag–Thomasalgorithm|287 B.4.2 ctrida|287 B.4.3 dlyap_exp–Lyapunovexponents|288 B.4.4 schmid–orthogonalization|288 B.4.5 FUNCTIONvolum–volumeinndimensions|288 B.4.6 FUNCTIONdeter–determinant|289 B.4.7 random_init–randomnumbers|289

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.