ebook img

Computational optimal control : tools and practice PDF

193 Pages·2009·3.199 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational optimal control : tools and practice

Computational Optimal Control Computational Optimal Control: Tools and Practice Subchan Subchan Rafal Zbikowski © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-71440-9 Computational Optimal Control Tools and Practice SubchanSubchan CranfieldUniversityatShrivenham,UK RafałZ˙bikowski CranfieldUniversityatShrivenham,UK A John Wiley and Sons, Ltd, Publication Thiseditionfirstpublished2009 (cid:1)c 2009JohnWiley&SonsLtd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ, UnitedKingdom. Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewith theCopyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withouttheprior permissionofthepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks. Allbrandnamesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksor registeredtrademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductor vendormentionedinthisbook.Thispublicationisdesignedtoprovideaccurateandauthoritative informationinregardtothesubjectmattercovered.Itissoldontheunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Ifprofessionaladviceorotherexpertassistanceis required,theservicesofacompetentprofessionalshouldbesought. LibraryofCongressCataloging-in-PublicationData Subchan,S. Computationaloptimalcontrol:toolsandpractice/S.Subchan,R.Zbikowski. p.cm. Includesbibliographicalreferencesandindex. ISBN978-0-470-71440-9(cloth) 1.Controltheory.2.Adaptivecontrolsystems.3.Mathematicaloptimization.I.Zbikowski,R.(Rafal) II.Title. TJ213.S7892013 629.8’312–dc22 2009019927 AcataloguerecordforthisbookisavailablefromtheBritishLibrary. ISBN978-0-470-71440-9(Hbk) PrintedandboundinGreatBritainbyAntonyRoweLtd,Chippenham,Wiltshire. Contents Preface ix Acknowledgements xv Nomenclature xvii 1 Introduction 1 1.1 HistoricalContextofComputationalOptimalControl . . . . . . . . . . . . . 2 1.2 ProblemFormulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 OutlineoftheBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 OptimalControl:OutlineoftheTheoryandComputation 9 2.1 Optimisation:FromFinitetoInfiniteDimension . . . . . . . . . . . . . . . . 9 2.1.1 FiniteDimension:SingleVariable . . . . . . . . . . . . . . . . . . . 10 2.1.2 FiniteDimension:TwoorMoreVariables . . . . . . . . . . . . . . . 15 2.1.3 InfiniteDimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 TheOptimalControlProblem . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 VariationalApproachtoProblemSolution . . . . . . . . . . . . . . . . . . . 29 2.3.1 ControlConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.2 MixedState–ControlInequalityConstraints . . . . . . . . . . . . . . 33 2.3.3 StateInequalityConstraints . . . . . . . . . . . . . . . . . . . . . . 33 2.4 NonlinearProgrammingApproachtoSolution . . . . . . . . . . . . . . . . . 34 2.5 NumericalSolutionoftheOptimalControlProblem. . . . . . . . . . . . . . 36 2.5.1 DirectMethodApproach . . . . . . . . . . . . . . . . . . . . . . . . 36 2.5.2 IndirectMethodApproach . . . . . . . . . . . . . . . . . . . . . . . 43 2.6 SummaryandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3 MinimumAltitudeFormulation 49 3.1 MinimumAltitudeProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 QualitativeAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2.1 FirstArc(LevelFlight):MinimumAltitudeFlightt (cid:1)t (cid:1)t . . . . 50 0 1 3.2.2 SecondArc:Climbing . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.3 ThirdArc:Diving(t (cid:1)t (cid:1)t). . . . . . . . . . . . . . . . . . . . . 64 3 f 3.3 MathematicalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.3.1 TheProblemwiththeThrustConstraintOnly . . . . . . . . . . . . . 64 vi CONTENTS 3.3.2 OptimalControlwithPathConstraints . . . . . . . . . . . . . . . . . 66 3.3.3 FirstArc:MinimumAltitudeFlight . . . . . . . . . . . . . . . . . . 67 3.3.4 SecondArc:Climbing . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.3.5 ThirdArc:Diving . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 IndirectMethodSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.1 Co-stateApproximation . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.2 SwitchingandJumpConditions . . . . . . . . . . . . . . . . . . . . 74 3.4.3 NumericalSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.5 SummaryandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.5.1 CommentsonSwitchingStructure . . . . . . . . . . . . . . . . . . . 85 4 MinimumTimeFormulation 95 4.1 MinimumTimeProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2 QualitativeAnalysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 FirstArc(LevelFlight):MinimumAltitudeFlight . . . . . . . . . . 96 4.2.2 SecondArc(Climbing) . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.2.3 ThirdArc(Diving) . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3 MathematicalAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.3.1 TheProblemwiththeThrustConstraintOnly . . . . . . . . . . . . . 101 4.3.2 OptimalControlwithPathConstraints . . . . . . . . . . . . . . . . . 103 4.3.3 FirstArc:MinimumAltitudeFlight . . . . . . . . . . . . . . . . . . 104 4.3.4 SecondArc:Climbing . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.5 ThirdArc:Diving . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.4 IndirectMethodSolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.5 SummaryandDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.5.1 CommentsonSwitchingStructure . . . . . . . . . . . . . . . . . . . 113 5 SoftwareImplementation 119 5.1 DIRCOLimplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1.1 User.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.1.2 InputFileDATLIM . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 5.1.3 InputFileDATDIM . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.1.4 GridRefinementandMaximumDimensionsinDIRCOL . . . . . . . 132 5.2 NUDOCCCSImplementation . . . . . . . . . . . . . . . . . . . . . . . . . 132 5.2.1 MainProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2.2 SubroutineMINFKT . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.3 SubroutineINTEGRAL . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.4 SubroutineDGLSYS . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2.5 SubroutineANFANGSW . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.2.6 SubroutineRANDBED . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.7 SubroutineNEBENBED . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.2.8 SubroutineCONBOXES . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3 GESOP(PROMIS/SOCS)Implementation. . . . . . . . . . . . . . . . . . . 139 5.3.1 DynamicEquations,Subroutinefmrhs.f . . . . . . . . . . . . . . 141 5.3.2 BoundaryConditions,Subroutinefmbcon.f . . . . . . . . . . . . 143 5.3.3 Constraints,Subroutinefmpcon.f . . . . . . . . . . . . . . . . . . 144 CONTENTS vii 5.3.4 ObjectiveFunction,Subroutinefmpcst.f . . . . . . . . . . . . . . 145 5.4 BNDSCOImplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 5.4.1 PossibleSourcesofError. . . . . . . . . . . . . . . . . . . . . . . . 146 5.4.2 BNDSCOCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.5 UserExperience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6 ConclusionsandRecommendations 159 6.1 Three-stageManualHybridApproach . . . . . . . . . . . . . . . . . . . . . 159 6.2 GeneratinganInitialGuess:Homotopy . . . . . . . . . . . . . . . . . . . . 160 6.3 PureStateConstraintandMulti-objectiveFormulation . . . . . . . . . . . . 161 6.4 FinalRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Appendix BNDSCOBenchmarkExample 165 A.1 AnalyticSolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 A.1.1 UnconstrainedorFreeArc(l (cid:2)1/4). . . . . . . . . . . . . . . . . . 167 A.1.2 TouchPointCase(1/6(cid:1)l (cid:1)1/4) . . . . . . . . . . . . . . . . . . . 168 A.1.3 ConstrainedArcCase(0(cid:1)l (cid:1)1/6) . . . . . . . . . . . . . . . . . . 169 Bibliography 173 Index 179 Preface ComputationalOptimalControl Reliableandefficientwaysoffindingthebestpossible (optimal) solutions is a pervasive problem in science and engineering. In many such pro- blems, especially in engineering, we can manipulate the optimised object/process through limited (constrained) influences (control) at our disposal which we can vary over time (dynamically). The dynamic control elicits dynamic responses from the optimised object/ process, often in ways which are difficultto guess or intuit. A judiciouschoice of optimal control, obeying the constraints, must therefore be based on a systematic procedure. The well-documented theory of optimal control is exactly the mathematical tool necessary for that.Givenamathematicaldescriptionoftheoptimisedobject/process,anoptimisationcri- terion(performanceindex)andconstraints,thetheoryofoptimalcontrolgivesmathematical equationswhosesolutionistheoptimalcontrolneeded.Inmostrealistic(andthuspractical) engineeringproblems,applicationofthetheoryleadstocomplexequations. The complexity of the optimal control equations is not a flaw—it properly reflects the mathematicaldetailsoftheoptimisedproblems;itisthedetailsthatmaketheproblemreal- isticandhencepractical.Butthecomplexityoftheoptimalcontrolequationsmeansthat,in industrialpractice,thetheorymustbeaccompaniedbycalculationswithdigitalcomputers, especially for advanced problems in aerospace and aeronautics. This blend of mathemati- cal theory and numericaltechniquesis the essence of computationaloptimal control.Both the theory and the numericalalgorithmsinvolved are rather non-trivialin nature, and their interactionaddsanotherlayerofcomplexity. BookFocusandPrerequisites Thisbookfocusesoninformeduseof computationalop- timal control rather than development of either theory or numerics. The aim of the book is to provide a hitherto unavailable computational optimal control self-study textbook for practising engineers, especially engineers working on challenging, real-world applications in aerospace and aeronauticalindustries. Graduate and postgraduatestudents who wantto specialiseinadvancedapplicationsofoptimalcontrolshouldalsofinditofinterest.Thepre- requisiteknowledgeisageneralbackgroundinnumericalanalysisandordinarydifferential equationsplusfamiliaritywith theFORTRAN computerlanguage,usuallyacquiredduring graduate engineeringstudies. Some knowledgeof optimal controlwould be helpful, but is notessential—therelevanttheorycanbepickedupwhilestudyingthistext. Case Study The main thrust of the bookis to explainhow to use computationaloptimal controltoolsinengineeringpractice,employinganadvancedaeronauticalcasestudytopro- videarealisticsettingforboththeoryandcomputation.Thecasestudyisfocusedonmissile x PREFACE guidanceintheformoftrajectoryshapingofagenericcruisemissileattackingafixedtarget whichmustbestruckfromabove.Theproblemisreinterpretedusingoptimalcontroltheory resultingintwoformulations:(1)minimumtime-integratedaltitudeand(2)minimumflight time.Theresultingtrajectoryhasacharacteristicshapeandhencetheproblemisalsoknown asoptimisationofthebuntmanoeuvre.Thiseminentlyrealisticandpracticalproblemisquite hard,becauserealisticmissileflightdynamicsandpracticalcontrolandflightpathconstraints areassumed.Duetoitschallengingnature,thebuntmanoeuvreproblemisanexcellentillus- trationofadvancedengineeringpractice,withoutcomfortingsimplificationsfoundinmany textbooks.Moreimportantly,theproblemstronglyexercisesboththetheoreticalandnumer- icalaspectsofcomputationaloptimalcontrol,soitrobustlyteststhetruevalueoftheoretical andsoftwaretoolsavailabletothepractitioner.Adetailedaccountoftheactualperformance ofthesetoolsisgiveninthisbook. Thebuntmanoeuvreprobleminitsminimumtime-integratedaltitudeandminimumflight timeformulationsistheonlyproblemtreatedinthisbook.Thisallowsadetailed,andoften tutorial,presentationwithinsightsintothestructureandnatureoftheoptimalsolutionsand alsointotheadvantagesandlimitationsoftheavailabletools.Ratherthanmovingfromone simple exampleto another,and learning little of real-world computationaloptimalcontrol, we preferthe readertostay focusedononein-depthproject.Introducingotherchallenging exampleswould,inouropinion,distractthereaderfromthemainaimofthisbook:informed useofthetoolsofcomputationaloptimalcontrolinadvancedengineeringpractice. Approach Each of the formulations of the bunt manoeuvre problem is solved using a three-stageapproach.In stage 1, the problemis discretised, effectivelytransformingit into a nonlinearprogrammingproblem,and hence suitable for solution with the public-domain FORTRAN packages DIRCOL and NUDOCCCS or the commercial FORTRAN packages PROMISorSOCS.Theresultsofthisdirectapproachareusedtodiscernthestructureofthe optimalsolution,i.e.typeofactiveconstraints,timeoftheiractivation,switchingandjump points. The qualitative analysis of the solution structure, employing the results of stage 1 andoptimalcontroltheory,constitutesstage2.Finally,instage3,theinsightsofstage2are madeprecisebyrigorousmathematicalformulationoftherelevanttwo-pointboundaryvalue problems (TPBVPs), using appropriate theorems of optimal control theory. The TPBVPs obtained from this indirect approach are then solved using the public-domain FORTRAN packageBNDSCOandtheresultscomparedwiththeappropriatesolutionsofstage1.Addi- tionally,acomparisonismadewiththeresultsobtainedbythecommercialpackageGESOP (asoftwareenvironmentwithPROMISandSOCSsolvers)whosesolutionapproachcanbe consideredashalf-waybetweentheapproachesofstages1and3. Foreachformulation(minimumtime-integratedaltitudeandminimumtime)theinfluence of boundaryconditionson the structure of the optimalsolution and the performanceindex isinvestigated.Softwareimplementationemployingthepublic-domainpackagesDIRCOL, NUDOCCCSandBNDSCO, andalsothecommercialpackagesSOCSandPROMISunder theGESOPenvironment,whichproducedtheresults,isdescribedanddocumented. BookFeatures Asexplainedearlierinthispreface,thisbookfocusesoninformeduseof computationaloptimal control for solving the terminal bunt manoeuvre,rather than devel- opment of either the underlying theory or the relevant numerics. In this context, the main featuresofthisbookareasfollows: PREFACE xi • formulatingtrajectoryshapingmissileguidanceasanoptimalcontrolproblemforthe caseofterminalbuntmanoeuvre; • devisingtwoformulationsoftheproblem: – minimumtime-integratedaltitude – minimumflighttime; • proposingathree-stagehybridapproachtosolveeachoftheproblemformulations: – stage1:solutionstructureexplorationusingadirectmethod – stage 2: qualitative analysis of the solution obtained in stage 1, using optimal control – stage3:mathematicalformulationoftheTPBVPbasedonthequalitativeanalysis ofstage2; • solvingeachoftheproblemformulationsusingthethree-stagehybridapproach: – stage1:byusingDIRCOL/NUDOCCCSsolvers – stage 2: by using the results of stage 1, understandingthe underlyingflightdy- namicsandemployingoptimalcontroltheory – stage3:byusingoptimalcontroltheoryandtheBNDSCOsolver; • analysing the influence of boundary conditions on the structure of the optimal con- trolsolutionofeachproblemformulationandtheresultingvaluesoftheperformance index; • interpretingtheresultsfromtheoperationalandcomputationalperspectives,pointing outthetrade-offsbetweenthetwo; • usingeffectivelyDIRCOL,NUDOCCCS,PROMISandSOCS(undertheGESOPen- vironment)andBNDSCOanddocumentingtheiruse. BookOrganisation We havestriventowritethe bookso thateachchapterisasmuchas possible independentof the others. Alas, we have not been able to attain the ideal of self- containedchapters,butwehopethatacertaindegreeofindependencehasbeenachieved. WebeginwiththeintroductoryChapter1whichisdeliberatelybrief:itgivesaverycon- cisehistoricalcontextofthesubjectofcomputationaloptimalcontrol,thendefinesthecase studyinvestigatedintherestofthebookandconcludeswithadetailedsummaryofthebook, chapter by chapter. Section 1.2 of Chapter 1 is an essential reference, as it describes the mathematicaldetailsofthecasestudyproblem.Areaderwhoispressedfortimemaywant toglanceatthatsectionandmoveon. Chapter 2 is a friendly(we hope)presentation of all the theory we use in the book.We havemadeanattempttoproduceareasonablyreadablenarrative,asopposedtoadryrecita- tionofformulaeandtheorems.ItisnotstrictlynecessarytoreadthewholeofChapter2in ordertofollowlateranalyses,especiallyifthereaderisfamiliarwiththebasicsofthetheory. However, it might be useful at least to glance throughthe material—our hard-won experi- ence shows that many “obvious” facts are far from clear, even for those who have already encounteredproblemsofcomputationaloptimalcontrol. xii PREFACE Chapters3 and 4 are the core of the bookin that they consider each variantof the case study analysed in this book. Each of these chapters is independent of the other, but both shouldbe studiedcarefullyif thereaderis to learnanythingrealfromthisbook.An impa- tientusermaysimplystartreadingthebookfromChapters3or4andconsultearlierchapters ifnecessary.However,theseearlierchaptersarenotinthisbookasaresultofacontractual obligation—we wrote them because we wished someone had written them when we em- barked on the analysis of the terminal bunt problem. Perhaps reading those chapters will savethereadersomeofthefrustrationweexperiencedinourencounterwithcomputational optimalcontrol. Chapter5isthepartofourbookwhichwestronglydrawtothereader’sattention,because it describes in practicaldetail—includingcode1 listings—real (and tested) software imple- mentationsoftheanalysespresentedinChapter4.Wehavestrivennotonlytoexplainhow tousevarioussoftwarepackages,butalsotoshareour(oftenhard-won)userexperience.A separatetutorialonthemostchallengingofthesoftwarepackages,BNDSCO,canbefound intheAppendix. Finally,we offerin Chapter 6 pragmaticconclusionsbased on our user experiencewith thetoolsandpracticeofcomputationaloptimalcontrol.Moreover,wesuggestafewwaysof goingbeyondtheapproachesdescribedinthebook.Ifthereaderislookingfor“thebottom line”,thisistheplacewherewegiveit. Thebookarosefromareal-world,three-yearprojectgiventotheauthorsbytheUKMin- istry of Defence, which was quite challenging and led, among others, to the first author’s PhDthesis.Also,muchofthematerialappearinginChapter3appearedfirstinSubchanand Z˙bikowski(2007a)whilethebulkofChapter4comesfromSubchanandZ˙bikowski(2007b). Bibliographic Comments There are three categories of optimal control books currently available: 1. Introductorytextbooks,focusedmostlyontheory: (a) Entry-leveltexts i. L.M.Hocking,OptimalControl:AnIntroductiontotheTheorywithAppli- cations,OxfordUniversityPress,1991. ii. E. R. Pinch, Optimal Control and the Calculus of Variations, Oxford Uni- versityPress,1995. iii. A.E.Bryson,DynamicOptimization,Addison-Wesley,1999. iv. D.S.Naidu,OptimalControlSystems,CRCPress,2002. v. D.G.Hull,OptimalControlTheoryforApplications,Springer,2003. (b) Moreadvancedtexts,butdealingwithlinearproblemsonly i. F. L. Lewis and V. L. Syrmos, Optimal Control, John Wiley & Sons Ltd, 1995. ii. A. E. Bryson,Applied LinearOptimalControl: Examplesand Algorithms, CambridgeUniversityPress,2002. iii. B. D. O. Anderson and J. B. Moore, Optimal Control: Linear Quadratic Methods,Dover,2007. 1Thecodelistingspresentedinthisbookareavailableelectronicallyfromhttp://www.wiley.com/go/zbikowski.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.