ebook img

Computational models for polydisperse particulate and multiphase systems PDF

548 Pages·2013·3.063 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational models for polydisperse particulate and multiphase systems

more information – www.cambridge.org/9780521858489 ComputationalModelsforPolydisperseParticulateand MultiphaseSystems Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modeling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal, whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, breakup, nucleation, advection and diffusion, and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM, and ECQMOM are also discussed and compared, as arerealizablefinite-volumemethods.Thisprovidesthetoolsyouneedtouse quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, Matlab scripts for sev- eralalgorithmsarealsoprovided,soyoucanapplythemethodsdescribedto practicalproblemsstraightaway. Daniele L. Marchisio is an Associate Professor at the Politecnico di Torino, Italy,wherehereceivedhisPh.D.in2001.Hehasheldvisitingpositionsatthe LaboratoiredesSciencesduGe´nieChimique,CNRS–ENSIC(Nancy,France), IowaStateUniversity(USA),Eidgeno¨ssische Technische Hochschule Zu¨rich (Switzerland),andUniversityCollegeLondon(UK),andhasbeenaninvited professor at Aalborg University (Denmark) and the University of Valladolid (Spain). He acts as a referee for the key international journals in his field of research.Hehasauthoredmorethan60scientificpapersand5bookchapters, andco-editedthevolumeMultiphaseReactingFlows(Springer,2007). Rodney O. Fox is the Anson Marston Distinguished Professor of Engineering atIowaStateUniversity(USA),anAssociateScientistattheUS-DOEAmes Laboratory,andaSeniorResearchFellowintheEM2ClaboratoryattheEcole Centrale Paris (France). His numerous professional awards include an NSF Presidential Young Investigator Award in 1992 and Fellow of the American PhysicalSocietyin2007.TheimpactofFox’sworktoucheseverytechnologi- calareadealingwithmultiphaseflowandchemicalreactions.Hismonograph Computational Models for Turbulent Reacting Flows (Cambridge University Press,2003)offersanauthoritativetreatmentofthefield. CambridgeSeriesinChemicalEngineering SeriesEditor ArvindVarma,PurdueUniversity EditorialBoard ChristopherBowman,UniversityofColorado EdwardCussler,UniversityofMinnesota ChaitanKhosla,StanfordUniversity AthanassiosZ.Panagiotopoulos,PrincetonUniversity GregoryStephanopolous,MassachusettsInstituteofTechnology JackieYing,InstituteofBioengineeringandNanotechnology,Singapore BooksinSeries BaldeaandDaoutidis,DynamicsandNonlinearControlofIntegratedProcessSystems Chau,ProcessControl:AFirstCoursewithMATLAB Cussler,Diffusion:MassTransferinFluidSystems,ThirdEdition CusslerandMoggridge,ChemicalProductDesign,SecondEdition Denn,ChemicalEngineering:AnIntroduction Denn,PolymerMeltProcessing:FoundationsinFluidMechanicsandHeatTransfer DuncanandReimer,ChemicalEngineeringDesignandAnalysis:AnIntroduction FanandZhu,PrinciplesofGas–SolidFlows Fox,ComputationalModelsforTurbulentReactingFlows Leal,AdvancedTransportPhenomena:FluidMechanicsandConvectiveTransport LimandShin,Fed-BatchCultures:Fundamentals,Modeling,Optimization,andControlof Semi-BatchBioreactors MarchisioandFox,ComputationalModelsforPolydisperseParticulateandMultiphaseSystems MewisandWagner,ColloidalSuspensionRheology Morbidelli,Gavriilidis,andVarma,CatalystDesign:OptimalDistributionofCatalystinPellets, Reactors,andMembranes NobleandTerry,PrinciplesofChemicalSeparationswithEnvironmentalApplications OrbeyandSandler,ModelingVapor–LiquidEquilibria:CubicEquationsofStateandTheir MixingRules Petyluk,DistillationTheoryanditsApplicationstoOptimalDesignofSeparationUnits RaoandNott,AnIntroductiontoGranularFlow Russell,Robinson,andWagner,MassandHeatTransfer:AnalysisofMassContactorsandHeat Exchangers Schobert,ChemistryofFossilFuelsandBiofuels Slattery,AdvancedTransportPhenomena Varma,Morbidelli,andWu,ParametricSensitivityinChemicalSystems Computational Models for Polydisperse Particulate and Multiphase Systems DANIELE L. MARCHISIO PolitecnicodiTorino RODNEY O. FOX IowaStateUniversity cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521858489 (cid:2)c DanieleL.MarchisioandRodneyO.Fox2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationData Marchisio,DanieleL. Computationalmodelsforpolydisperseparticulateandmultiphasesystems/DanieleL. Marchisio,PolitecnicodiTorino,RodneyO.Fox,IowaStateUniversity. pages cm.–(Cambridgeseriesinchemicalengineering) ISBN978-0-521-85848-9 1. Multiphaseflow–Mathematicalmodels. 2. Chemicalreactions–Mathematicalmodels. 3. Transporttheory. 4. Dispersion–Mathematicalmodels. I. Fox,RodneyO.,1959– II. Title. TA357.5.M84M37 2013 532(cid:3).56–dc23 2012044073 ISBN978-0-521-85848-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. aGiampaolo a` Roberte Contents Preface pagexiii Notation xvii 1 Introduction 1 1.1 Dispersemultiphaseflows 1 1.2 Twoexamplesystems 3 1.2.1 Thepopulation-balanceequationforfineparticles 3 1.2.2 Thekineticequationforgas–particleflow 8 1.3 Themesoscalemodelingapproach 14 1.3.1 Relationtomicroscalemodels 16 1.3.2 Number-densityfunctions 18 1.3.3 Thekineticequationforthedispersephase 19 1.3.4 Closureatthemesoscalelevel 20 1.3.5 Relationtomacroscalemodels 20 1.4 Closuremethodsformoment-transportequations 23 1.4.1 Hydrodynamicmodels 23 1.4.2 Momentmethods 25 1.5 AroadmaptoChapters2–8 27 2 Mesoscaledescriptionofpolydispersesystems 30 2.1 Number-densityfunctions(NDF) 30 2.1.1 Length-basedNDF 32 2.1.2 Volume-basedNDF 33 2.1.3 Mass-basedNDF 33 2.1.4 Velocity-basedNDF 34 2.2 TheNDFtransportequation 35 2.2.1 Thepopulation-balanceequation(PBE) 35 2.2.2 Thegeneralizedpopulation-balanceequation(GPBE) 37 2.2.3 Theclosureproblem 37 2.3 Moment-transportequations 38 2.3.1 Moment-transportequationsforaPBE 38 2.3.2 Moment-transportequationsforaGPBE 40 2.4 FlowregimesforthePBE 43 2.4.1 LaminarPBE 43 2.4.2 TurbulentPBE 44 2.5 Themoment-closureproblem 45 vii viii Contents 3 Quadrature-basedmomentmethods 47 3.1 Univariatedistributions 47 3.1.1 Gaussianquadrature 49 3.1.2 Theproduct–difference(PD)algorithm 51 3.1.3 TheWheeleralgorithm 53 3.1.4 Consistencyofamomentset 55 3.2 Multivariatedistributions 62 3.2.1 Brute-forceQMOM 63 3.2.2 Tensor-productQMOM 68 3.2.3 ConditionalQMOM 74 3.3 Theextendedquadraturemethodofmoments(EQMOM) 82 3.3.1 Relationshiptoorthogonalpolynomials 83 3.3.2 UnivariateEQMOM 84 3.3.3 EvaluationofintegralswiththeEQMOM 91 3.3.4 MultivariateEQMOM 93 3.4 Thedirectquadraturemethodofmoments(DQMOM) 99 4 Thegeneralizedpopulation-balanceequation 102 4.1 Particle-baseddefinitionoftheNDF 102 4.1.1 DefinitionoftheNDFforgranularsystems 102 4.1.2 NDFestimationmethods 105 4.1.3 DefinitionoftheNDFforfluid–particlesystems 107 4.2 Fromthemulti-particle–fluidjointPDFtotheGPBE 110 4.2.1 Thetransportequationforthemulti-particlejointPDF 111 4.2.2 Thetransportequationforthesingle-particlejointPDF 112 4.2.3 ThetransportequationfortheNDF 112 4.2.4 Theclosureproblem 113 4.3 Moment-transportequations 114 4.3.1 Afewwordsaboutphase-spaceintegration 114 4.3.2 Disperse-phasenumbertransport 116 4.3.3 Disperse-phasevolumetransport 116 4.3.4 Fluid-phasevolumetransport 117 4.3.5 Disperse-phasemasstransport 118 4.3.6 Fluid-phasemasstransport 121 4.3.7 Disperse-phasemomentumtransport 123 4.3.8 Fluid-phasemomentumtransport 124 4.3.9 Higher-ordermomenttransport 127 4.4 MomentclosuresfortheGPBE 130 5 Mesoscalemodelsforphysicalandchemicalprocesses 136 5.1 Anoverviewofmesoscalemodeling 136 5.1.1 MesoscalemodelsintheGPBE 137 5.1.2 Formulationofmesoscalemodels 141 5.1.3 Relationtomacroscalemodels 145 5.2 Phase-spaceadvection:massandheattransfer 147 5.2.1 Mesoscalevariablesforparticlesize 149 5.2.2 Sizechangeforcrystallineandamorphousparticles 152 5.2.3 Non-isothermalsystems 155 5.2.4 Masstransfertogasbubbles 156

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.