ebook img

Computational Methods in Transport: Granlibakken 2004 PDF

537 Pages·2006·22.504 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Methods in Transport: Granlibakken 2004

Lecture Notes 48 in Computational Science and Engineering Editors Timothy J.Barth MichaelGriebel DavidE.Keyes RistoM.Nieminen Dirk Roose TamarSchlick Frank Graziani Editor Computational Methods in Transport Granlibakken 2004 With196Figuresand23Tables ABC Editor FrankGraziani LawrenceLivermoreNationalLaboratory EastAvenue7000 Livermore,CA94550,U.S.A. email:[email protected] LibraryofCongressControlNumber:2005931994 MathematicsSubjectClassification:P19005,M1400X ISBN-10 3-540-28122-3SpringerBerlinHeidelbergNewYork ISBN-13 978-3-540-28122-1SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liableforprosecutionundertheGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com (cid:1)c Springer-VerlagBerlinHeidelberg2006 PrintedinTheNetherlands Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Typesetting:bytheauthorsandTechBooksusingaSpringerLATEXmacropackage Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper SPIN:11360605 46/TechBooks 543210 Contents Part I Astrophysics Radiation Hydrodynamics in Astrophysics Chris L. Fryer.................................................. 3 1 Defining Radiation Hydrodynamics Terms ...................... 3 2 Schemes Used in Astrophysics................................. 4 3 Astrophysical Applications ................................... 6 4 SPH Radiation Transport .................................... 10 References ..................................................... 13 Radiative Transfer in Astrophysical Applications I. Hubeny ...................................................... 15 1 Introduction ................................................ 15 2 Description of Radiation ..................................... 16 3 Absorption, Emission and Scattering Coefficients ................ 17 4 Hierarchies of Approximations ................................ 20 5 General Problem ............................................ 24 6 Exact Numerical Solution .................................... 26 7 Conclusions................................................. 32 References ..................................................... 32 Neutrino Transport in Core Collapse Supernovae Anthony Mezzacappa, Matthias Liebend¨orfer, Christian Y. Cardall, O.E. Bronson Messer, Stephen W. Bruenn ........................ 35 1 The Core Collapse Supernova Paradigm........................ 35 2 The O(v/c) Neutrino Transport Equation in Spherical Symmetry: An Illustrative Example...................................... 40 3 Finite Differencing of the O(v/c) Neutrino Transport Equation in Spherical Symmetry ....................................... 42 4 The General Case: The Multidimensional Neutrino Transport Equations .................................................. 55 5 Boltzmann Neutrino Transport: The Current State of the Art..... 59 6 Previews of Coming Distractions: Neutrino Flavor Transformation. 63 7 Summary and Prospects...................................... 65 References ..................................................... 67 VI Contents Discrete-Ordinates Methods for Radiative Transfer in the Non-Relativistic Stellar Regime Jim E. Morel................................................... 69 1 Introduction ................................................ 69 2 The Approximate Radiation-Hydrodynamics Model.............. 69 3 Discretization and Solution Techniques......................... 73 References ..................................................... 80 Part II Atmospheric Science, Oceanography, and Plant Canopies Effective Propagation Kernels in Structured Media with Broad Spatial Correlations, Illustration with Large-Scale Transport of Solar Photons Through Cloudy Atmospheres Anthony B. Davis............................................... 85 1 Introduction and Overview ................................... 85 2 Extinction and Scattering Revisited, and Some Notations Introduced ............................... 88 3 Propagation ................................................ 96 4 Multiple Scattering and Diffusions............................. 114 5 Large-Scale 3D RT Effects in Cloudy Atmospheres............... 122 6 Concluding Remarks......................................... 134 References ..................................................... 136 Mathematical Simulation of the Radiative Transfer in Statistically Inhomogeneous Clouds Evgueni I. Kassianov............................................ 141 1 Introduction ................................................ 141 2 Stochastic RT Equation ...................................... 142 3 Statistically Inhomogeneous Model ............................ 143 4 Ensemble Averaged Radiance ................................. 144 5 Validation .................................................. 146 6 Summary................................................... 147 References ..................................................... 148 Transport Theory for Optical Oceanography N.J. McCormick ................................................ 151 1 Introduction ................................................ 151 2 Aspects Requiring Special Computational Attention ............. 156 3 Computational Programs..................................... 159 4 Computing Challenges ....................................... 161 References ..................................................... 161 Contents VII Perturbation Technique in 3D Cloud Optics: Theory and Results Igor N. Polonsky, Anthony B. Davis, Michael A. Box................ 165 1 Introduction ................................................ 165 2 Definition of the Problem..................................... 165 3 Variational Principe to Derive the Radiative Transfer Equation...................... 166 4 Perturbation................................................ 167 5 A Toy Example ............................................. 168 References ..................................................... 170 Vegetation Canopy Reflectance Modeling with Turbid Medium Radiative Transfer Barry D. Ganapol............................................... 173 1 Introduction ................................................ 173 2 Description of the LCM2 Coupled Leaf/Canopy Radiative Transfer (RT) Model......................................... 180 3 LCM2 Demonstration........................................ 196 References ..................................................... 210 Rayspread: A Virtual Laboratory for Rapid BRF Simulations Over 3-D Plant Canopies Jean-Luc Widlowski, Thomas Lavergne, Bernard Pinty, Michel Verstraete, Nadine Gobron ....................................... 211 1 Canopy Radiation Transfer Fundamentals ...................... 212 2 The Rayspread Model........................................ 219 3 Conclusion ................................................. 227 References ..................................................... 228 Part III High Energy Density Physics Use of the Space Adaptive Algorithm to Solve 2D Problems of Photon Transport and Interaction with Medium A. V. Alekseyev, R. M. Shagaliev, I. M. Belyakov, A. V. Gichuk, V. V. Evdokimov, A. N. Moskvin, A. A. Nuzhdin, N. P. Pleteneva, and T. V. Shemyakina............................................... 235 1 Introduction ................................................ 235 2 Statement of a 2D Transport Equation......................... 236 3 Description of 2D Transport Equation Approximation Methods ... 238 4 Description of the Space Adaptive Computational Algorithm for Transport Equation.......................................... 238 5 Results of Computational Investigations of the Adaptive Method Performance ................................................ 240 6 Conclusion ................................................. 251 References ..................................................... 254 VIII Contents Accurate and Efficient Radiation Transport in Optically Thick Media – by Means of the Symbolic Implicit Monte Carlo Method in the Difference Formulation Abraham Sz˝oke, Eugene D. Brooks III, Michael Scott McKinley, and Frank C. Daffin............................................. 255 1 Introduction ................................................ 255 2 Radiation Transport in LTE .................................. 258 3 The Difference Formulation................................... 261 4 Test Problems .............................................. 268 5 Summary and Directions for Further Work ..................... 277 References ..................................................... 280 An Evaluation of the Difference Formulation for Photon Transport in a Two Level System Frank Daffin, Michael Scott McKinley, Eugene D. Brooks III, and Abraham Sz˝oke ................................................. 283 1 Introduction ................................................ 283 2 The Equations for Line Transport ............................. 285 3 Numerical Development ...................................... 289 4 Numerical Results in the Gray Approximation .................. 295 5 Concluding Remarks......................................... 304 References ..................................................... 305 Non-LTE Radiation Transport in High Radiation Plasmas Howard A. Scott ................................................ 307 1 Introduction ................................................ 307 2 Non-LTE Energetics ......................................... 309 3 Radiation Transport ......................................... 311 4 Test Case: Radiation-driven Cylinder .......................... 316 5 Linear Response Matrix...................................... 322 6 Summary................................................... 324 References ..................................................... 325 Finite-Difference Methods Implemented in SATURN Complex to Solve Multidimensional Time-Dependent Transport Problems R.M. Shagaliev, A.V. Alekseyev, A.V. Gichuk, A.A. Nuzhdin, N.P. Pleteneva, and L.P. Fedotova ................................ 327 1 Multiple-Group Transport Equation Approximation ............. 331 Implicit Solution of Non-Equilibrium Radiation Diffusion Including Reactive Heating Source in Material Energy Equation Dana E. Shumaker, Carol S. Woodward............................ 353 1 Introduction ................................................ 353 2 Mathematical Model......................................... 354 Contents IX 3 Numerical Methods.......................................... 355 4 Results..................................................... 359 5 Conclusions................................................. 368 References ..................................................... 369 Part IV Mathematics and Computer Science Transport Approximations in Partially Diffusive Media Guillaume Bal.................................................. 373 1 Introduction ................................................ 373 2 Variational Formulation for Transport ......................... 375 3 Transport-Diffusion Coupling ................................. 389 4 Generalized Diffusion Models ................................. 393 A Local Second-Order Equation and Linear Corrector.............. 398 References ..................................................... 399 High Order Finite Volume Nonlinear Schemes for the Boltzmann Transport Equation Barna L. Bihari, Peter N. Brown ................................. 401 1 Introduction ................................................ 401 2 Background ................................................ 403 3 Discretization of the 3-D Problem ............................. 405 4 Numerical Experiments ...................................... 410 5 Discussion.................................................. 420 References ..................................................... 421 Obtaining Identical Results on Varying Numbers of Processors in Domain Decomposed Particle Monte Carlo Simulations N.A. Gentile, Malvin Kalos, Thomas A. Brunner ................... 423 1 Description of the Problem ................................... 423 2 Ensuring the Invariance of the Pseudo-Random Number Stream Employed by Each Particle ................................... 426 3 Ensuring That Addition is Commutative ....................... 427 4 Results..................................................... 430 5 Conclusions................................................. 431 References ..................................................... 432 KM-Method of Iteration Convergence Acceleration for Solving a 2D Time-Dependent Multiple-Group Transport Equation and its Modifications A.V. Gichuk, L.P. Fedotova, R.M. Shagaliev ....................... 435 1 Statement of a 2D Transport Problem ......................... 435 2 KM-method ................................................ 437 3 MKM-method .............................................. 438 X Contents 4 KM3-method ............................................... 439 5 Test Computation Results .................................... 440 A Regularized Boltzmann Scattering Operator for Highly Forward Peaked Scattering Anil K. Prinja, Brian C. Franke .................................. 445 1 Introduction ................................................ 445 2 Generalized Fermi Expansion ................................. 446 3 Regularized Collision Operator................................ 449 4 Numerical Results ........................................... 452 References ..................................................... 455 Implicit Riemann Solvers for the P Equations n Ryan McClarren, James Paul Holloway, Thomas Brunner, Thomas Mehlhorn............................................... 457 1 Introduction ................................................ 457 2 P Equations ............................................... 458 n 3 Solving the Riemann Problem................................. 459 4 High Resolution Flux from Linear Reconstruction ............... 461 5 Time Integration ............................................ 462 6 Implementation ............................................. 463 7 Results..................................................... 463 8 Conclusion ................................................. 466 References ..................................................... 467 The Solution of the Time–Dependent S Equations N on Parallel Architectures F. Douglas Swesty .............................................. 469 1 Introduction ................................................ 469 2 A Brief Review of The Implicit Discrete Ordinates Discretization Method .................................................... 470 3 Iterative Approaches......................................... 472 4 Speeding Up and Obtaining Convergence....................... 475 5 Parallel Implementation of the Full Linear System Approach ........................... 481 6 Parallel Scalability of a 2-D Test Problem ...................... 483 7 Conclusions and Future Directions............................. 484 8 Acknowledgments ........................................... 485 References ..................................................... 485 DifferentAlgorithmsof2DTransportEquationParallelization on Random Non-Orthogonal Grids Shagaliev R.M., Alekseev A.V., Beliakov I.M., Gichuk A.V., Nuzhdin A.A., Rezchikov V.Yu............................................ 487 Contents XI Part V Neutron Transport Parallel Deterministic Neutron Transport with AMR C.J. Clouse .................................................... 499 1 Introduction ................................................ 499 2 Code Overview.............................................. 500 3 Numerical Results ........................................... 508 4 Future Work................................................ 511 References ..................................................... 512 An Overview of Neutron Transport Problems and Simulation Techniques Edward W. Larsen .............................................. 513 1 Introduction ................................................ 513 2 Physical and Mathematical Basics ............................. 513 3 Basics of Stochastic and Deterministic Methods ................. 521 4 Stochastic (Monte Carlo) Methods............................. 522 5 Deterministic Methods ....................................... 527 6 Automatic Variance Reduction (Hybrid) Methods ............... 530 7 Discussion.................................................. 531 References ..................................................... 533

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.