ebook img

Computational Methods in Plasma Physics PDF

364 Pages·2010·2.617 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Methods in Plasma Physics

Computational Methods in Plasma Physics Chapman & Hall/CRC Computational Science Series SERIES EDITOR Horst Simon Associate Laboratory Director, Computing Sciences Lawrence Berkeley National Laboratory Berkeley, California, U.S.A. AIMS AND SCOPE This series aims to capture new developments and applications in the field of computational science through the publication of a broad range of textbooks, reference works, and handbooks. Books in this series will provide introductory as well as advanced material on mathematical, sta- tistical, and computational methods and techniques, and will present researchers with the latest theories and experimentation. The scope of the series includes, but is not limited to, titles in the areas of scientific computing, parallel and distributed computing, high performance computing, grid computing, cluster computing, heterogeneous computing, quantum computing, and their applications in scientific disciplines such as astrophysics, aeronautics, biology, chemistry, climate modeling, combustion, cosmology, earthquake prediction, imaging, materials, neuroscience, oil exploration, and weather forecasting. PUBLISHED TITLES PETASCALE COMPUTING: Algorithms and Applications Edited by David A. Bader PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING Edited by Michael Alexander and William Gardner GRID COMPUTING: TECHNIQUES AND APPLICATIONS Barry Wilkinson INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen INTRODUCTION TO SCHEDULING Yves Robert and Frédéric Vivien SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT Edited by Arie Shoshani and Doron Rotem COMPUTATIONAL METHODS IN PLASMA PHYSICS Stephen Jardin Chapman & Hall/CRC Computational Science Series Computational Methods in Plasma Physics Stephen Jardin Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business A CHAPMAN & HALL BOOK On the cover is a computed iso-contour surface for the toroidal current density in the nonlinear phase of an internal instability of a tokamak plasma. Contours on one toroidal plane and one mid-section plane are also shown. (Courtesy of Dr. J. Breslau and the M3D team.) CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-13: 978-1-4398-1095-8 (Ebook-PDF) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit- ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com to Marilyn Contents List of Figures xiii List of Tables xvii Preface xix List of Symbols xxi 1 Introduction to Magnetohydrodynamic Equations 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Magnetohydrodynamic (MHD) Equations . . . . . . . . . . . 4 1.2.1 Two-Fluid MHD . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Resistive MHD . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Ideal MHD . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.4 Other Equation Sets for MHD . . . . . . . . . . . . . 10 1.2.5 Conservation Form . . . . . . . . . . . . . . . . . . . . 10 1.2.6 Boundary Conditions . . . . . . . . . . . . . . . . . . 12 1.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Characteristics in Ideal MHD . . . . . . . . . . . . . . 16 1.3.2 Wave Dispersion Relation in Two-Fluid MHD . . . . . 23 1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2 Introduction to Finite Difference Equations 27 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Implicit and Explicit Methods . . . . . . . . . . . . . . . . . 29 2.3 Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Consistency, Convergence, and Stability . . . . . . . . . . . 31 2.5 Von Neumann Stability Analysis . . . . . . . . . . . . . . . 32 2.5.1 Relation to Truncation Error . . . . . . . . . . . . . . 36 2.5.2 Higher-Order Equations . . . . . . . . . . . . . . . . . 37 2.5.3 Multiple Space Dimensions . . . . . . . . . . . . . . . 39 2.6 Accuracy and Conservative Differencing . . . . . . . . . . . 39 2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 vii viii Table of Contents 3 Finite Difference Methods for Elliptic Equations 45 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 One-Dimensional Poisson’s Equation . . . . . . . . . . . . . 46 3.2.1 Boundary Value Problems in One Dimension . . . . . 46 3.2.2 Tridiagonal Algorithm . . . . . . . . . . . . . . . . . 47 3.3 Two-Dimensional Poisson’s Equation . . . . . . . . . . . . . 48 3.3.1 Neumann Boundary Conditions . . . . . . . . . . . . 50 3.3.2 Gauss Elimination . . . . . . . . . . . . . . . . . . . . 53 3.3.3 Block-Tridiagonal Method . . . . . . . . . . . . . . . 56 3.3.4 General Direct Solvers for Sparse Matrices. . . . . . . 57 3.4 Matrix Iterative Approach . . . . . . . . . . . . . . . . . . . 57 3.4.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.2 Jacobi’s Method . . . . . . . . . . . . . . . . . . . . . 60 3.4.3 Gauss–Seidel Method . . . . . . . . . . . . . . . . . . 60 3.4.4 Successive Over-Relaxation Method (SOR) . . . . . . 61 3.4.5 Convergence Rate of Jacobi’s Method . . . . . . . . . 61 3.5 Physical Approach to Deriving Iterative Methods . . . . . . 62 3.5.1 First-Order Methods . . . . . . . . . . . . . . . . . . 63 3.5.2 Accelerated Approach: Dynamic Relaxation . . . . . 65 3.6 Multigrid Methods . . . . . . . . . . . . . . . . . . . . . . . 66 3.7 Krylov Space Methods . . . . . . . . . . . . . . . . . . . . . 70 3.7.1 Steepest Descent and Conjugate Gradient . . . . . . 72 3.7.2 Generalized Minimum Residual (GMRES) . . . . . . 76 3.7.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . 80 3.8 Finite Fourier Transform . . . . . . . . . . . . . . . . . . . . 82 3.8.1 Fast Fourier Transform . . . . . . . . . . . . . . . . . 83 3.8.2 Application to 2D Elliptic Equations . . . . . . . . . 86 3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4 Plasma Equilibrium 93 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 Derivation of the Grad–Shafranov Equation . . . . . . . . . 93 4.2.1 Equilibrium with Toroidal Flow . . . . . . . . . . . . . 95 4.2.2 Tensor Pressure Equilibrium . . . . . . . . . . . . . . 97 4.3 The Meaning of Ψ . . . . . . . . . . . . . . . . . . . . . . . . 99 4.4 Exact Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.4.1 Vacuum Solution . . . . . . . . . . . . . . . . . . . . 102 4.4.2 Shafranov–Solov´ev Solution . . . . . . . . . . . . . . . 104 4.5 Variational Forms of the Equilibrium Equation . . . . . . . 105 4.6 Free Boundary Grad–Shafranov Equation . . . . . . . . . . 106 4.6.1 Inverting the Elliptic Operator . . . . . . . . . . . . . 107 4.6.2 Iterating on J (R,Ψ) . . . . . . . . . . . . . . . . . . 107 φ 4.6.3 Determining Ψ on the Boundary . . . . . . . . . . . . 109 4.6.4 Von Hagenow’s Method . . . . . . . . . . . . . . . . . 111 4.6.5 Calculation of the Critical Points . . . . . . . . . . . 113 Table of Contents ix 4.6.6 Magnetic Feedback Systems . . . . . . . . . . . . . . 114 4.6.7 Summary of Numerical Solution . . . . . . . . . . . . 116 4.7 Experimental Equilibrium Reconstruction . . . . . . . . . . . 116 4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5 Magnetic Flux Coordinates in a Torus 121 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.2.1 Jacobian . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2.2 Basis Vectors . . . . . . . . . . . . . . . . . . . . . . . 124 5.2.3 Grad, Div, Curl . . . . . . . . . . . . . . . . . . . . . 125 5.2.4 Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . 127 5.2.5 Metric Elements . . . . . . . . . . . . . . . . . . . . . 127 5.3 Magnetic Field, Current, and Surface Functions . . . . . . . 129 5.4 Constructing Flux Coordinates from Ψ(R,Z) . . . . . . . . . 131 5.4.1 Axisymmetric Straight Field Line Coordinates . . . . 133 5.4.2 Generalized Straight Field Line Coordinates . . . . . 135 5.5 Inverse Equilibrium Equation . . . . . . . . . . . . . . . . . 136 5.5.1 q-Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 137 5.5.2 J-Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 138 5.5.3 Expansion Solution . . . . . . . . . . . . . . . . . . . . 139 5.5.4 Grad–Hirshman Variational Equilibrium . . . . . . . . 140 5.5.5 Steepest Descent Method . . . . . . . . . . . . . . . . 144 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6 Diffusion and Transport in Axisymmetric Geometry 149 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.2 Basic Equations and Orderings . . . . . . . . . . . . . . . . 149 6.2.1 Time-Dependent Coordinate Transformation . . . . . 151 6.2.2 Evolution Equations in a Moving Frame . . . . . . . 153 6.2.3 Evolution in Toroidal Flux Coordinates . . . . . . . . 155 6.2.4 Specifying a Transport Model . . . . . . . . . . . . . 158 6.3 Equilibrium Constraint . . . . . . . . . . . . . . . . . . . . . 162 6.3.1 Circuit Equations. . . . . . . . . . . . . . . . . . . . . 163 6.3.2 Grad–Hogan Method . . . . . . . . . . . . . . . . . . . 163 6.3.3 Taylor Method (Accelerated) . . . . . . . . . . . . . . 164 6.4 Time Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 7 Numerical Methods for Parabolic Equations 171 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 7.2 One-Dimensional Diffusion Equations . . . . . . . . . . . . . 171 7.2.1 Scalar Methods . . . . . . . . . . . . . . . . . . . . . . 172 7.2.2 Non-Linear Implicit Methods . . . . . . . . . . . . . . 175 7.2.3 Boundary Conditions in One Dimension . . . . . . . . 179

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.