ebook img

Computational Methods for the Alignment and Score-Informed Transcription of Piano Music PDF

152 Pages·2017·8.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Methods for the Alignment and Score-Informed Transcription of Piano Music

1 Computational Methods for the Alignment and Score-Informed Transcription of Piano Music By Siying WANG Submittedinpartialfulfilmentoftherequirements oftheDegreeofDoctorofPhilosophy London,UK November6,2017 AUTHOR’S DECLARATION I,SiyingWang,confirmthattheresearchincludedwithinthisthesisismyown workorthatwhereithasbeencarriedoutincollaborationwith,orsupported by others, that this is duly acknowledged below and my contribution indi- cated.Previouslypublishedmaterialisalsoacknowledgedbelow. IattestthatIhaveexercisedreasonablecaretoensurethattheworkisorig- inal, and does not to the best of my knowledge break any UK law, infringe anythirdparty’scopyrightorotherIntellectualPropertyRight,orcontainany confidentialmaterial. IacceptthattheCollegehastherighttouseplagiarismdetectionsoftwareto checktheelectronicversionofthethesis. Iconfirmthatthisthesishasnotbeenpreviouslysubmittedfortheawardofa degreebythisoranyotheruniversity. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consentoftheauthor. SIGNATURE: .......................................... DATE: .......................................... Detailsofcollaborationandpublications:SeeSection1.3. 2 ABSTRACT Thisthesisisconcernedwithcomputationalmethodsforalignmentandscore-informed transcriptionofpianomusic. Firstly,severalmethodsareproposedtoimprovethealign- mentrobustnessandaccuracywhenvariousversionsofonepieceofmusicshowcomplex differenceswithrespecttoacousticconditionsormusicalinterpretation.Secondly,score toperformancealignmentisappliedtoenablescore-informedtranscription. Although music alignment methods have considerably improved in accuracy in re- centyears,thetaskremainschallenging. Theresearchinthisthesisaimstoimprovethe robustnessforsomecaseswheretherearesubstantialdifferencesbetweenversionsand state-of-the-artmethodsmayfailinidentifyingacorrectalignment. Thisthesisfirstex- ploitstheavailabilityofmultipleversionsofthepiecetobealigned. Byprocessingthese jointly,thealignmentprocesscanbestabilisedbyexploitingadditionalexamplesofhow asectionmightbeinterpretedorwhichacousticconditionsmayarise. Twomethodsare proposed, progressivealignmentandprofileHMM,bothadaptedfromthemultiplebi- ologicalsequencealignmenttask. Experimentsdemonstratethatthesemethodscanin- deedimprovethealignmentaccuracyandrobustnessovercomparablepairwisemethods. Secondly,thisthesispresentsascoretoperformancealignmentmethodthatcanimprove therobustnessincaseswheresomemusicalvoices,suchasthemelody,areplayedasyn- chronouslytoothers–astylisticdeviceusedinmusicalexpression.Theasynchroniesbe- tweenthemelodyandtheaccompanimentarehandledbytreatingthevoicesasseparate timelinesinamulti-dimensionalvariantofdynamictimewarping(DTW).Themethod measurably improves the alignment accuracy for pieces with asynchronous voices and preservestheaccuracyotherwise. Onceanaccuratealignmentbetweenascoreandanaudiorecordingisavailable,the scoreinformationcanbeexploitedaspriorknowledgeinautomaticmusictranscription (AMT),forscenarioswherescoreisavailable,suchasmusictutoring.Score-informeddic- tionarylearningisusedtolearnthespectralpatternofeachpitchthatdescribestheenergy distributionoftheassociatednotesintherecording.Moreprecisely,thedictionarylearn- ingprocessinnon-negativematrixfactorization(NMF)isconstrainedusingthealigned score. Thisway, byadaptingthedictionarytoagivenrecording, theproposedmethod improvestheaccuracyoverthestate-of-the-art. 3 ACKNOWLEDGEMENTS Firstandforemost,IwouldliketothankmytwowonderfulPhDsupervisors-Sebastian EwertandSimonDixon.Ihavebeenfeelingextremelyluckysincethefirstdaytheyagreed tosuperviseme. Backthen,Iwasconfusedwithmyresearchtopicandhadstrongself- doubt. I simply would not be able to accomplish the work in this thesis without their invaluableguidanceandencouragement,supportandfaithinme. Theyshapedmyun- derstandingofgoodresearchandshowedmethespiritofscientists. Iespeciallywantto thankSebastianforalwaysmakingthetimetodiscusswithme,despitebeingverybusy himself. I want to express my gratitude to Professor Elaine Chew, for being my female role model. IwasinspiredbyElaine’sattitudetowardresearchandlifeingeneralandheref- fortsingenderequality. ThefouryearsIspentinQueenMaryhavealwaysbeenenjoyable,thankstomydear friendshere. EspeciallyYading,Chunyang,ChrisandShan. Iwillneverforgetthelaugh andtearswesharetogether,thedaysandeveningswespenttogetherworkingandchat- ting.IreallyappreciatethatyouarealwaystherewheneverIneed,offeringhelpandsug- gestionsorsimplylistening. IwouldalsoliketothankMaria, Veronica, Mi, Tian, Beici, Simin,Katerina,Sid,Peter,Di,Mattias,Janis,Luwei,Matt,Eitaforbeinggreatlab-mates andfriends. ThanksforStellaSickandWernerGoeblforkindlyprovidingthedataset. Lastbutnotleast, mydeepestthanksgotomyfamilyfortheirunwaveringsupport andtrust. Thankstomyparentsforunderstandingandsupportingmeinpursuingmy dreamfarfromhome.ThankstoFranforyourenduringtrust,encouragementandcaring forme, forkeepingmephysicallyandmentallyhealthy, sometimessimplybydragging meoutfromworktoawalk,alsoforproofreadingmythesis,discussingwithmeaboutmy researchfromtimetotimeandalwaysprovidinggoodadvices. ThisworkwasfundedbytheChinaScholarshipCouncil. 4 TABLE OF CONTENTS Author’sDeclaration 2 Abstract 3 Acknowledgements 4 TableofContents 8 ListofTables 9 ListofFigures 10 ListofSymbols 13 1 Introduction 15 1.1 MotivationandGoals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2 ThesisStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3 AssociatedPublications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Background 22 2.1 MusicTerminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.1.1 MusicalScore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.2 MusicalPerformancesandExpression . . . . . . . . . . . . . . . . . 24 2.1.3 MIDINotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 FeatureRepresentationinMusicAlignment. . . . . . . . . . . . . . . . . . . 25 2.2.1 Chroma-basedFeature . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 TABLEOFCONTENTS 6 2.2.2 Decaying Locally adaptive Normalised Chroma Onset (DLNCO) Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 AlignmentMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 DynamicProgramming . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.2 ProbabilisticModelling . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.3 Similarity between Dynamic Time Warping and Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.3.4 OtherTechniquesusedinMusicAlignment . . . . . . . . . . . . . . 44 2.4 ExploitingScoreInformationusingAlignmentTechniquesinMIR . . . . . 44 2.4.1 Score-informedExpressiveParameterExtraction . . . . . . . . . . . 44 2.4.2 Score-informedSourceSeparation . . . . . . . . . . . . . . . . . . . 45 2.4.3 Score-informedTranscription . . . . . . . . . . . . . . . . . . . . . . 46 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Robustjointalignmentofmultipleperformances 50 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 BackgroundonMultipleSequenceAlignment . . . . . . . . . . . . . . . . . 52 3.4 MethodsforJointMusicAlignment . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.1 ProgressiveAlignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4.2 ProbabilisticProfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.4.3 AcceleratingAlignmentsUsingMulti-ScaleDynamicProgramming 66 3.5 ComparingPairwise,ProgressiveandProfile-HMMBasedAlignment . . . 67 3.5.1 DatasetandSettings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.5.2 ComparisonBetweenthePairwiseandJointAlignments . . . . . . 70 3.5.3 ComparisonoftheTwoJointAlignmentMethods. . . . . . . . . . . 73 3.6 FurtherInvestigationsoftheJointAlignmentMethod . . . . . . . . . . . . . 74 3.6.1 SubsetExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.2 GapPenalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.3 AlignmentOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.6.4 ViterbiTraining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6.5 IterativeAlignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 TABLEOFCONTENTS 7 3.6.6 Furtherevaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Compensating For Asynchronies Between Musical Voices In Score- PerformanceAlignment 84 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 AlignmentMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.1 ComputingFeaturesforIndividualVoices . . . . . . . . . . . . . . . 88 4.3.2 Three-DimensionalDynamicTimeWarping. . . . . . . . . . . . . . 88 4.3.3 PathConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.1 DataSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.2 GroundTruthGeneration . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.4.3 EvaluationMeasure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5 ConclusionandFutureWork. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Identifying Missing and Extra Notes in Piano Recordings Using Score- InformedDictionaryLearning 100 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3 BaselineMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.4 AnalysisandExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.4.1 ExampleofFailureUsingtheBaselineMethod . . . . . . . . . . . . 111 5.4.2 FromSpectralTemplatestoTime-FrequencyPatterns . . . . . . . . 113 5.4.3 FromHardtoSoftConstraintRegions. . . . . . . . . . . . . . . . . . 114 5.4.4 EncouragingTemporalContinuityinA . . . . . . . . . . . . . . . . . 115 5.4.5 EncouragingEnergyDecayintheTemplateMatrix . . . . . . . . . . 116 5.4.6 ParameterEstimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5.5.1 Dataset&EvaluationMeasure . . . . . . . . . . . . . . . . . . . . . . 118 TABLEOFCONTENTS 8 5.5.2 InfluenceofIndividualParameters . . . . . . . . . . . . . . . . . . . 120 5.5.3 ComparisonBetweentheBaselineMethodandExtendedMethod. 124 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6 Conclusion 127 6.1 SummaryofContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 FutureDirections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3 ClosingRemarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 References 133 LIST OF TABLES 2.1 AnexampleofLCSalignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1 ChopinMazurkasandtheiridentifiersusedintheexperiments . . . . . . . . . 69 3.2 Alignmenterror(meanandstandarddeviationofaveragebeatdeviationinmil- liseconds)forfourtypesofalignmentmethodsandarandombaseline. . . . . 71 3.3 Comparing the Pairwise II alignment method (Ewert et al., 2009b)), Profile HMMandProgressiveAlignmentmethodsintermsofaveragenoteonsetde- viation(inmilliseconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1 Experimentalresultsforthreeexcerptsplayedwithstrongasynchrony(upper) andthreepieceswithoutasynchrony(lower). Thistableshowsthenumberof performancesavailableandstatisticsofthealignmenterrorinmillisecondsfor therespectivepieces.Bothresultsforthe2D-DTW(Ewertetal.,2009b)andour 3D-DTWalignmentmethodarecomputedseparatelyforthemelody(Mel)and accompaniment(Acc). Theerrorvaluesofthesetwovoicesareaveragedover the number of notes to get the overall (OA) alignment error. The change in alignmenterrorachievedby3D-DTWisshowninparentheses. . . . . . . . . . 96 5.1 Piecesforevaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 AverageEvaluationResultsofthreeMethodsforCorrectlyPlayedNotes(C),Ex- traNotes(E)andMissingNotes(M). . . . . . . . . . . . . . . . . . . . . . . . . . 125 9 LIST OF FIGURES 2.1 Anexampleofamusicalscore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Generalframeworkofmusicalignment . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 SolvingtheDynamicProgrammingproblemwithalook-uptable . . . . . . . . 31 2.4 AnexampleofDTWalignmentfortwoperformanceexcerptsofChopinOp.24 No.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 MultiscaleDTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.6 AnexampleofHMMmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.7 Non-NegativeMatrixFactorisation(NMF) . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Areal-worldexampleofpairwisemethodfailingtocomputeracorrectalignment 51 3.2 Anexampleofprogressivealignment . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3 Anexampleofreplacingcopiesofelementswithgapsymbolsafteraligninga newsequenceX tothetemplateF,whereC(3,2)<C(2,2)andC(5,5)<C(5,4). 59 3.4 TopologyofaProfileHMM(Durbinetal.,1999),showingrowsofdeletestates(top), insertstates(middle)andmatchstates(bottom) . . . . . . . . . . . . . . . . . . . . . 60 3.5 AnexampleofProfileHMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.6 ComparisonofthePairwiseIIalignmentmethod(Ewertetal.,2009b)withthe proposedprogressivealignmentmethodandprofileHMMmethod. . . . . . . 71 3.7 HistogramsofbeatdeviationusingthePairwiseIIalignmentmethod(Ewert etal.,2009b),theprogressivealignmentandprofileHMMmethod. . . . . . . . 73 3.8 Comparison between the Pairwise II alignment method (Ewert et al., 2009b) andtwojointalignmentmethodsforsubsetexperiments. . . . . . . . . . . . . 75 10

Description:
Especially Yading, Chunyang, Chris and Shan. I will never forget the laugh and tears . Accelerating Alignments Using Multi-Scale Dynamic Programming. 66. 3.5 Comparing Pairwise . 3.4 Topology of a Profile HMM (Durbin et al., 1999), showing rows of delete states (top), insert states (middle) and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.