COMPUTATIONAL MATERIALS ENGINEERING AnIntroductiontoMicrostructureEvolution This page intentionally left blank COMPUTATIONAL MATERIALS ENGINEERING An Introduction to Microstructure Evolution KOENRAAD G. F. JANSSENS DIERK RAABE ERNST KOZESCHNIK MARK A. MIODOWNIK BRITTA NESTLER AMSTERDAM•BOSTON•HEIDELBERG•LONDON NEWYORK•OXFORD•PARIS•SANDIEGO SANFRANCISCO•SINGAPORE•SYDNEY•TOKYO AcademicPressisanimprintofElsevier ElsevierAcademicPress 30CorporateDrive,Suite400,Burlington,MA01803,USA 525BStreet,Suite1900,SanDiego,California92101-4495,USA 84Theobald’sRoad,LondonWC1X8RR,UK Thisbookisprintedonacid-freepaper. ∞ Copyright(cid:1)c 2007,ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopy,recording,oranyinformationstorageandretrievalsystem,withoutpermission inwritingfromthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartmentinOxford,UK: phone:(+44)1865843830,fax:(+44)1865853333,E-mail:[email protected] completeyourrequeston-lineviatheElsevierhomepage(http://elsevier.com),byselecting“CustomerSupport” andthen“ObtainingPermissions.” LibraryofCongressCataloging-in-PublicationData Computationalmaterialsengineering:anintroductiontomicrostructureevolution/editorsKoenraadG.F. Janssens...[etal.]. p.cm. Includesbibliographicalreferencesandindex. ISBN-13: 978-0-12-369468-3(alk.paper) ISBN-10: 0-12-369468-X(alk.paper) 1.Crystals–Mathematicalmodels.2.Microstructure–Mathematicalmodels.3.Polycrystals–Mathematical models.I.Janssens,KoenraadG.F.,1968- TA418.9.C7C662007 548(cid:1).7–dc22 2007004697 BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN13: 978-0-12-369468-3 ISBN10: 0-12-369468-X ForallinformationonallElsevierAcademicPresspublications visitourWebsiteatwww.books.elsevier.com PrintedintheUnitedStatesofAmerica 07 08 09 10 11 12 10 9 8 7 6 5 4 3 2 1 toSu This page intentionally left blank Table of Contents Preface xiii 1 Introduction 1 1.1 MicrostructuresDefined 1 1.2 MicrostructureEvolution 2 1.3 WhySimulateMicrostructureEvolution? 4 1.4 FurtherReading 5 1.4.1 OnMicrostructuresandTheirEvolutionfrom aNoncomputationalPointofView 5 1.4.2 OnWhatIsNotTreatedinThisBook 6 2 ThermodynamicBasisofPhaseTransformations 7 2.1 ReversibleandIrreversibleThermodynamics 8 2.1.1 TheFirstLawofThermodynamics 8 2.1.2 TheGibbsEnergy 11 2.1.3 MolarQuantitiesandtheChemicalPotential 11 2.1.4 EntropyProductionandtheSecondLawof Thermodynamics 12 2.1.5 DrivingForceforInternalProcesses 15 2.1.6 ConditionsforThermodynamicEquilibrium 16 2.2 SolutionThermodynamics 18 2.2.1 EntropyofMixing 19 2.2.2 TheIdealSolution 21 2.2.3 RegularSolutions 22 2.2.4 GeneralSolutionsinMultiphaseEquilibrium 25 2.2.5 TheDiluteSolutionLimit—Henry’sandRaoult’sLaw 27 2.2.6 TheChemicalDrivingForce 28 2.2.7 InfluenceofCurvatureandPressure 30 2.2.8 GeneralSolutionsandtheCALPHADFormalism 33 2.2.9 PracticalEvaluationofMulticomponentThermodynamic Equilibrium 40 vii 3 MonteCarloPottsModel 47 3.1 Introduction 47 3.2 Two-StatePottsModel(IsingModel) 48 3.2.1 Hamiltonians 48 3.2.2 Dynamics(ProbabilityTransitionFunctions) 49 3.2.3 LatticeType 50 3.2.4 BoundaryConditions 51 3.2.5 TheVanillaAlgorithm 53 3.2.6 MotionbyCurvature 54 3.2.7 TheDynamicsofKinksandLedges 57 3.2.8 Temperature 61 3.2.9 BoundaryAnisotropy 62 3.2.10Summary 64 3.3 Q-StatePottsModel 64 3.3.1 UniformEnergiesandMobilities 65 3.3.2 Self-OrderingBehavior 67 3.3.3 BoundaryEnergy 68 3.3.4 BoundaryMobility 72 3.3.5 PinningSystems 75 3.3.6 StoredEnergy 77 3.3.7 Summary 80 3.4 Speed-UpAlgorithms 80 3.4.1 TheBoundary-SiteAlgorithm 81 3.4.2 TheN-FoldWayAlgorithm 82 3.4.3 ParallelAlgorithm 84 3.4.4 Summary 87 3.5 ApplicationsofthePottsModel 87 3.5.1 GrainGrowth 87 3.5.2 IncorporatingRealisticTexturesandMisorientation Distributions 89 3.5.3 IncorporatingRealisticEnergiesandMobilities 92 3.5.4 ValidatingtheEnergyandMobilityImplementations 93 3.5.5 AnisotropicGrainGrowth 95 3.5.6 AbnormalGrainGrowth 98 3.5.7 Recrystallization 102 3.5.8 ZenerPinning 103 3.6 Summary 107 3.7 FinalRemarks 107 3.8 Acknowledgments 108 4 CellularAutomata 109 4.1 ADefinition 109 4.2 AOne-DimensionalIntroduction 109 4.2.1 One-DimensionalRecrystallization 111 4.2.2 BeforeMovingtoHigherDimensions 111 4.3 +2DCAModelingofRecrystallization 116 4.3.1 CA-NeighborhoodDefinitionsinTwoDimensions 116 4.3.2 TheInterfaceDiscretizationProblem 118 4.4 +2DCAModelingofGrainGrowth 123 viii TABLEOFCONTENTS 4.4.1 ApproximatingCurvatureinaCellularAutomatonGrid 124 4.5 AMathematicalFormulationofCellularAutomata 128 4.6 IrregularandShapelessCellularAutomata 129 4.6.1 IrregularShapelessCellularAutomataforGrainGrowth 131 4.6.2 InthePresenceofAdditionalDrivingForces 135 4.7 HybridCellularAutomataModeling 136 4.7.1 Principle 136 4.7.2 CaseExample 137 4.8 LatticeGasCellularAutomata 140 4.8.1 Principle—BooleanLGCA 140 4.8.2 BooleanLGCA—ExampleofApplication 142 4.9 NetworkCellularAutomata—ADevelopmentfortheFuture? 144 4.9.1 CombinedNetworkCellularAutomata 144 4.9.2 CNCAforMicrostructureEvolutionModeling 145 4.10FurtherReading 147 5 ModelingSolid-StateDiffusion 151 5.1 DiffusionMechanismsinCrystallineSolids 151 5.2 MicroscopicDiffusion 154 5.2.1 ThePrincipleofTimeReversal 154 5.2.2 ARandomWalkTreatment 155 5.2.3 Einstein’sEquation 157 5.3 MacroscopicDiffusion 160 5.3.1 PhenomenologicalLawsofDiffusion 160 5.3.2 SolutionstoFick’sSecondLaw 162 5.3.3 DiffusionForcesandAtomicMobility 164 5.3.4 InterdiffusionandtheKirkendallEffect 168 5.3.5 MulticomponentDiffusion 171 5.4 NumericalSolutionoftheDiffusionEquation 174 6 ModelingPrecipitationasaSharp-InterfacePhaseTransformation 179 6.1 StatisticalTheoryofPhaseTransformation 181 6.1.1 TheExtendedVolumeApproach—KJMAKinetics 181 6.2 Solid-StateNucleation 185 6.2.1 Introduction 185 6.2.2 MacroscopicTreatmentofNucleation—ClassicalNucleation Theory 186 6.2.3 TransientNucleation 189 6.2.4 MulticomponentNucleation 191 6.2.5 TreatmentofInterfacialEnergies 194 6.3 Diffusion-ControlledPrecipitateGrowth 197 6.3.1 ProblemDefinition 199 6.3.2 Zener’sApproachforPlanarInterfaces 202 6.3.3 Quasi-staticApproachforSphericalPrecipitates 203 6.3.4 MovingBoundarySolutionforSphericalSymmetry 205 6.4 MultiparticlePrecipitationKinetics 206 6.4.1 TheNumericalKampmann–WagnerModel 206 6.4.2 TheSFFKModel—AMean-FieldApproachforComplex Systems 209 6.5 ComparingtheGrowthKineticsofDifferentModels 215 TABLEOFCONTENTS ix
Description: