ebook img

Computational investigations of the electronic structure of molecular actinide compounds PDF

233 Pages·2009·4.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational investigations of the electronic structure of molecular actinide compounds

Computational Investigations of the Electronic Structure of Molecular Actinide Compounds Submitted by: L. Jonasson For the degree of: Doctor of Philosophy Supervisor: Professor N. Kaltsoyannis University College London, 2009 Abstract In this PhD thesis the electronic structure of a range of actinide compounds has been investigated using density functional theory. The reason for using DFT instead of other methods is mainly due to the size of the compounds which makes multireference calculations prohibitively expensive, but also to make comparisons with previously calculated DFT results. The first chapter presents the basic concepts of electronic structure theory and the chemical properties of the actinides and lanthanides. The theoretical foundation of DFT and the consequences of relativity are also introduced. In the second chapter the bonding in mixed MUCl , MUCl 2-, NpReCl 2- and 6 8 8 PuOsCl 2- (M = Mo, W) systems is investigated and compared with previous work on the 8 M Cl , M Cl 2-, U Cl and U Cl 2- systems. The study shows that the total bonding 2 6 2 8 2 6 2 8 energy in the mixed compounds is the average of the two “pure” compounds. The third chapter deals with systems of plenary or lacunary Keggin phosphomolybdate coordination to actinide (Th), lanthanide (Ce, La, Lu) and transition metal (Hf, Zr) cations: [PMo O ]3-, [PMo O ] 14-, [PMo O ] 6- and 12 40 11 39 2 12 40 2 [PMo O ][PMo O ]10-. These large, highly anionic systems proved to be very 11 39 12 40 challenging computationally. The main result of the study confirms that the bonding is ionic and that there are few differences in the behaviour of the transition metals. In the fourth chapter the electronic spectrum of NpO 2+, NpO Cl 2- and 2 2 4 NpO (OH) 2- is calculated using time dependent DFT. TDDFT has proved adequate for 2 4 the uranium analogues of these systems and this extends previous work on f0 systems to f1 systems. The results show that TDDFT is in poor agreement with both experimental results and multireference calculations for these compounds. In chapter five, group 15 and 16 uranyl analogues have been investigated. For the UE (E = O, S, Se, Te) analogues the geometry bends for all chalcogens heavier than O. 2 The UE 2+ analogues remain linear all the way down group 16. In U(NCH ) 2+ the 2 3 2 formation of a π “back bone” along the axis of the molecule was noted. The σ-bonding valence MOs stabilize while the π MOs are destabilized down group 15 and 16. Chapter six is a summary of the results in this thesis and an outlook on potential future work. Acknowledgements I would first like to thank my supervisor Nik Kaltsoyannis for his patience and support in helping me finish this PhD project. There were times when results were not forthcoming or needed explanations but he provided stability, calm and guidance at those times. I would like to thank Jonas Häller for letting me know about UCL and this PhD project as well as the continuous support in my research and being a fellow Swede abroad. Still need to work a bit on the nationalism but overall a very good friend. I would also like to thank Rosie, Luke, Kieran, Amy, Andrea, German, Andy, Ross, Zoso, Matt, Laura and everyone, past and present, who has been working in G19 for their support and interesting discussions about a lot of different topics, be they scientific or otherwise. We are all proof that natural light is vastly overrated! I have met a lot of people in London who have made the last three years enjoyable. It would be impossible to name them all here. You know who you are. I would like to mention a few people I have spent a lot of time with during my time here, Mike, Sophie, Marta, Zbig and Kasia, who have been flatmates with me. Having to hunt new accommodation every autumn definitely brings you closer and we have had some great times together. My parents, sister, niece and grandparents in Sweden have not seen me that often during my time in the UK but, thanks to modern technology, I have been able to keep in touch with them all regularly. I have been home enough each year to rest, relax and enjoy the incredible nature we take for granted. Their encouragement and backing have helped me greatly. Contents Chapter 1 - Introduction...............................................................................................9 Introduction.............................................................................................................9 General features of the actinides and lanthanides...................................................10 Electronic structure theory.........................................................................................14 Introduction...........................................................................................................14 The Schrödinger equation......................................................................................14 The variational principle........................................................................................16 Linear combination of atomic orbitals....................................................................17 Basis sets...............................................................................................................18 Pauli principle .......................................................................................................21 Slater determinants................................................................................................21 The Hartree-Fock method......................................................................................21 Electron exchange and correlation.........................................................................24 Post-Hartree-Fock methods....................................................................................24 Relativistic effects.....................................................................................................27 Density Functional Theory........................................................................................32 Kohn-Sham density functional theory....................................................................32 The Kohn-Hohenberg theorems.............................................................................32 Calculating the electronic energy...........................................................................33 Exchange-correlation functionals...........................................................................36 Local density approximation..................................................................................37 Generalized gradient approximation......................................................................38 Hybrid functionals.................................................................................................39 Time dependent density functional theory..............................................................40 Atomic charge analysis schemes................................................................................42 Mulliken charge analysis scheme...........................................................................42 Voronoi charge analysis scheme............................................................................43 Hirshfeld charge analysis scheme ..........................................................................43 Mayer bond order analysis.........................................................................................44 Codes........................................................................................................................44 Gaussian03............................................................................................................45 ADF......................................................................................................................46 Frozen core approximation....................................................................................46 Energy decomposition............................................................................................47 Research Projects..........................................................................................................48 Chapter 2 - Analysis of metal-metal bonding in MUCl , MUCl 2-, NpReCl 2- and 6 8 8 PuOsCl 2- (M = Mo, W)...............................................................................................51 8 Introduction...................................................................................................................51 Aim...........................................................................................................................54 Computational details................................................................................................54 Results..........................................................................................................................55 MUCl (M = Mo, W).................................................................................................55 6 Geometry...............................................................................................................55 Electronic structure................................................................................................56 Energy decomposition analysis..............................................................................58 Mayer bond orders.................................................................................................63 MUCl 2- (M = Mo, W)...............................................................................................64 8 Geometry...............................................................................................................64 Electronic structure................................................................................................65 Energy decomposition analysis..............................................................................68 Mayer bond orders.................................................................................................72 NpReCl 2-..................................................................................................................73 8 Geometry...............................................................................................................73 Electronic structure................................................................................................74 Energy decomposition analysis..............................................................................75 Mayer bond orders.................................................................................................76 PuOsCl 2-..................................................................................................................77 8 Geometry...............................................................................................................77 Electronic structure................................................................................................77 Mayer bond order..................................................................................................79 Periodic trends.......................................................................................................79 Conclusions...................................................................................................................82 Chapter 3 - The coordination properties of plenary and lacunary Keggin phosphomolybdates to tri- and tetravalent cations....................................................84 Polyoxometallates.....................................................................................................84 Aim...........................................................................................................................89 Computational details................................................................................................90 Results..........................................................................................................................92 X[PMo O ] 10- (X = Ce, Th).......................................................................................92 11 39 2 Geometry..................................................................................................................92 Atomic charge analysis..............................................................................................94 Mulliken population analysis.....................................................................................95 Energy decomposition...............................................................................................96 Mayer bond order analysis.........................................................................................97 X[PMo O ]3- and X[PMo O ] 6- (X = Zr4+, Hf4+, La3+, Lu3+)....................................98 12 40 12 40 2 Geometry..................................................................................................................98 Atomic charge analysis............................................................................................101 Hirshfeld charge analysis.....................................................................................101 Voronoi charge analysis.......................................................................................103 Energy decomposition analysis................................................................................105 X[PMo O ]3- (X = Zr4+, Hf4+, La3+, Lu3+)..........................................................105 12 40 X([PMo O ]3-) (X = Zr4+, Hf4+, La3+, Lu3+)......................................................106 12 40 2 Mulliken population analysis...................................................................................108 X[PMo O ][PMo O ]6- (X = Zr4+, Hf4+).................................................................110 11 39 12 40 Energy decomposition.............................................................................................112 Atomic charge analysis............................................................................................112 Mulliken population analysis...................................................................................115 Mayer bond order analysis.......................................................................................116 Conclusions.................................................................................................................118 Chapter 4 - The electronic spectrum of NpO 2+, NpO Cl 2- and NpO (OH) 2- using 2 2 4 2 4 time-dependent density functional theory................................................................120 Introduction.................................................................................................................120 The electronic structure of actinyls..........................................................................120 Uranyl.................................................................................................................120 Neptunyl..............................................................................................................123 Aim.........................................................................................................................125 Computational details..............................................................................................126 Results........................................................................................................................129 Geometry................................................................................................................129 Electronic structure..................................................................................................130 UO 2+ and NpO 2+...............................................................................................130 2 2 UO Cl 2- and NpO Cl 2-.......................................................................................137 2 4 2 4 NpO (OH) 2-........................................................................................................144 2 4 NpO (H O) 2+......................................................................................................149 2 2 5 Na (GeW O ) (NpO ) 14-....................................................................................150 2 9 34 2 2 2 Electronic transitions...............................................................................................152 UO 2+ and NpO 2+...............................................................................................152 2 2 UO Cl 2- and NpO Cl 2-.......................................................................................155 2 4 2 4 NpO (OH) 2-........................................................................................................159 2 4 Na (GeW O ) (NpO ) 14-....................................................................................163 2 9 34 2 2 2 Conclusions.................................................................................................................167 Chapter 5 - Investigations of the bonding and bending in group 15 and group 16 uranyl analogues........................................................................................................169 Introduction.................................................................................................................169 Uranyl analogues.....................................................................................................169 Group 16 uranyl analogues..................................................................................169 Group 15 uranyl analogues..................................................................................171 Aim.........................................................................................................................173 Computational details..............................................................................................174 Results........................................................................................................................175 Geometry of UE 2+ (E = O, S, Se, Te)......................................................................175 2 Electronic structure - UE 2+ (E = O, S, Se, Te).........................................................178 2 SOF electronic structure......................................................................................178 SOC electronic structure......................................................................................181 SOF molecular orbital Mulliken decomposition...................................................183 Mulliken atomic orbital population analysis.............................................................186 Atomic charge analysis............................................................................................188 Energy decomposition - UE 2+ (E = O, S, Se, Te)....................................................190 2 Geometry of UE (E = O, S, Se Te).........................................................................193 2 Electronic structure..................................................................................................196 E-U-E = 180°.......................................................................................................196 E-U-E = 120°.......................................................................................................199 Why is UE 2+ linear and UE (E = O, S, Se, Te) bent?.............................................202 2 2 Geometry of U(XR) 2+ (X = N, P, As; R = H, CH ).................................................204 2 3 Electronic structure - U(XR) 2+ (X = N, P, As; R = H, CH )....................................207 2 3 U(XR) 2+ (X = N, P, As; R = H)..........................................................................207 2 U(XR) 2+ (X = N, P, As; R = CH ).......................................................................209 2 3 Mulliken population analysis...................................................................................214 Mayer bond order analysis.......................................................................................214 Atomic charge analysis............................................................................................215 Conclusions.................................................................................................................217 Chapter 6 - Summary................................................................................................219 Appendix 1 - Electronic structure of Na (Ge W O ) (NpO ) 14- and electronic 2 2 9 34 2 2 2 transitions in NpO Cl 2- and NpO (OH) 2-...............................................................222 2 4 2 4 References..................................................................................................................226 Chapter 1 Introduction Actinides Introduction All of the projects in this thesis are connected to the actinides, a group of elements usually confined to the outskirts of chemistry. Many of the actinides are radioactive and, when moving across the series, increasingly short-lived, making experimental investigations of them difficult and expensive. However, the field of actinide chemistry does exist and the following section will give a brief overview of the chemical properties of the actinides and the f-block elements in general. A more in depth introduction into the electronic structure of uranium and neptunium containing systems will follow in Chapter 4, relating to the investigation of the electronic structure of species containing these atoms. Figure 1.1. The general set of 5f orbitals as calculated in ADF 9 Chapter 1 - Introduction General features of the actinides and lanthanides The elements in the periodic table with atomic number 57-71 are known as the lanthanides after the first element of the series, lanthanum. Similarly, elements 89-103 are referred to as the actinides, named for actinium. Moving across both series the primary shell being filled is the f shell, 4f for the lanthanides and 5f for the actinides, with the 5f orbitals displayed in Figure 1.1. 5 e at 4 st n o dati 3 xi o al m r 2 o F 1 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Figure 1.2. The formal oxidation states of the lanthanides. Filled circles represent the most common oxidation states, open circle indicate other possible oxidation states In neutral lanthanides the valence electrons are distributed in the 4f, 5d and 6s orbitals. As the lanthanides are ionized, these orbitals are stabilized due to experiencing an increased effective nuclear charge, with the 4f orbitals being the most stabilized orbital. After three ionizations the 5d and 6s orbitals are emptied and the 4f orbitals so stabilized that the energy of removing additional electrons exceeds the energetic gain of forming a bond in the +4 oxidation state; thus the 4f is rendered inaccessible for chemical reactions. This is one of the main characteristics of lanthanide chemistry; almost all the lanthanides prefer the +3 oxidation state, with a few exceptions such as when the f shell can become empty (f0), half-filled (f7) or full (f14). One example of this is Ce which has been found at +4.1 10

Description:
In this PhD thesis the electronic structure of a range of actinide compounds has been investigated using chemical properties of the actinides and lanthanides.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.