ebook img

Computational Intelligence Paradigms in Economic and Financial Decision Making PDF

183 Pages·2016·6.663 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational Intelligence Paradigms in Economic and Financial Decision Making

Intelligent Systems Reference Library 99 Marina Resta Computational Intelligence Paradigms in Economic and Financial Decision Making Intelligent Systems Reference Library Volume 99 Series editors Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: [email protected] Lakhmi C. Jain, University of Canberra, Canberra, Australia, and University of South Australia, Adelaide, Australia e-mail: [email protected] About this Series The aim of this series is to publish a Reference Library, including novel advances and developments in all aspects of Intelligent Systems in an easily accessible and well structured form. The series includes reference works, handbooks, compendia, textbooks,well-structuredmonographs,dictionaries,andencyclopedias.Itcontains well integrated knowledge and current information in the field of Intelligent Systems. The series covers the theory, applications, and design methods of IntelligentSystems.Virtuallyalldisciplinessuchasengineering,computerscience, avionics, business, e-commerce, environment, healthcare, physics and life science are included. More information about this series at http://www.springer.com/series/8578 Marina Resta Computational Intelligence Paradigms in Economic and Financial Decision Making 123 Marina Resta DIEC University of Genova Genova Italy ISSN 1868-4394 ISSN 1868-4408 (electronic) Intelligent Systems Reference Library ISBN978-3-319-21439-9 ISBN978-3-319-21440-5 (eBook) DOI 10.1007/978-3-319-21440-5 LibraryofCongressControlNumber:2015950866 SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper SpringerInternationalPublishingAGSwitzerlandispartofSpringerScience+BusinessMedia (www.springer.com) To my parents Vincenzo and Franca, my husband Stefano and my son Antonio, without whose loving support this would not have happened. Preface This book presents a number of applications of computational intelligence paradigms, with a focus on economic and financial decision-making. In this con- text, the book includes tools like self-organizing maps (SOM) and their variants, elastic maps and elements of complex network theory. Thisbookoncomputationalintelligenceisthoughtforbothstudentsatgraduate level and practitioners dealing with practical application of computational intelli- gence, and it does not necessarily require a deeper background in artificial intel- ligenceandmathematics.Inanintroductoryperspective,infact,thefirstpartofthe book is devoted to provide basic notions and mathematical foundation for the computational tools that will be used in the second part of the same book. The intention of the book is not to provide thorough attention to all computa- tional intelligence paradigms and algorithms, but to give an overview of the most popular and frequently used models, for these models are provided with a number of applications with discussion. In addition the book provides insights into many new developments to tempt the interested reader. In this perspective the material can be useful to graduate students and researchers who want a broader view of various paradigms of computational intelligence. The bookisorganizedinto two parts.Part Iprovidesashort introductiontothe different paradigms of computational intelligence including: self-organizing maps (Chap. 1), complex networks (Chap. 2), and elastic maps (Chap. 3). Part II covers the application of different paradigms, and it can be read in any order. The fol- lowing topics are included: Chapter 4 introduces the use of SOM variants for the simulationofmarketpricemodeling;Chapter5analyzestheuseofelasticmapsto define the risk profile of financial investments; Chapter 6 discusses how self-organizing maps and their enhancements can be helpful to identify hubs and communities in financial markets; Chapter 7 employs network paradigms to study the financial balance sheets of health care providers; Chapter 8 focuses on an application of self-organizing maps to explore the behavior of a population's mortality rate and life expectancy. Finally, Chap. 9 uses SOM to discover a firm's vii viii Preface clusters, analyzing data from micro-territories inside a city’s boundaries, trying to exploit possible development policies. As a finalremark,it is necessarytothank a numberof people who have helped toproducethisbook.Firstofall,IamdeeplyindebtedtoProfessorLakhmiJainto whom I address very warm thanks, for trusting in me and giving this challenging opportunity. Also, many thanks to my parents, Vincenzo and Franca, my husband Stefano,andmysonAntonio,withouttheirsupportandloveitwouldhavenotbeen possible to write this book. Genova Marina Resta July 2015 Contents Part I Theoretical Framework 1 Yet Another Introduction to Self-Organizing Maps . . . . . . . . . . . . 3 1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 The Basic Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Stopping Criteria and Convergence Measures. . . . . . . . . . . . . . . 6 1.4 Output Visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 SOM Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 SOM Batch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Topological Structures in SOMs. . . . . . . . . . . . . . . . . . . 14 1.5.3 Neural Gas and Growing Neural Gas . . . . . . . . . . . . . . . 15 1.5.4 Topology Representing Networks. . . . . . . . . . . . . . . . . . 15 1.5.5 Self-Organizing Surface . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.6 Evolving Self-Organizing Map. . . . . . . . . . . . . . . . . . . . 16 1.5.7 Growing Hierarchical SOM. . . . . . . . . . . . . . . . . . . . . . 17 1.6 Putting SOM at Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Networks Analysis and Beyond. . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 Classical Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Lattice Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Scale-Free Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.2 Power-Law Distribution in Real-World Networks. . . . . . . 26 2.4.3 Barabasi–Albert Model . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 The Configuration Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Small-World Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7 Measuring the Robustness of Networks. . . . . . . . . . . . . . . . . . . 30 2.7.1 Average Shortest Path Length . . . . . . . . . . . . . . . . . . . . 31 2.7.2 Clustering Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 31 ix x Contents 2.7.3 Hierarchical Modularity. . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7.4 Assortativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.7.5 Degree Correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8 Centrality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Elastic Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 A Formal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3 How Elastic Maps Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.4 Available Algorithm Implementations. . . . . . . . . . . . . . . . . . . . 44 Part II Applications 4 SOM Variants for the Simulation of Market Price Modeling . . . . . 49 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Voronoi Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3 An Application to Financial Markets: Main Settings. . . . . . . . . . 59 4.4 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 Conclusions and Outlooks for Future Works . . . . . . . . . . . . . . . 67 5 Elastic Maps to Define the Risk Profile of Financial Investments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.1.1 Strategic Asset Allocation . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.2 Tactical Asset Allocation. . . . . . . . . . . . . . . . . . . . . . . . 70 5.1.3 Stock Picking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Portfolio Selection Within the Markowitz Framework. . . . . . . . . 72 5.3 Case Study: The General Framework . . . . . . . . . . . . . . . . . . . . 76 5.4 Stocks Picking with Elastic Maps. . . . . . . . . . . . . . . . . . . . . . . 76 5.4.1 Maps Visualization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.4.2 Building Securities Portfolios with Elastic Maps. . . . . . . . 77 5.5 Selection with Fundamental Analysis . . . . . . . . . . . . . . . . . . . . 85 5.5.1 Data and Preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5.2 The Formation of the Portfolio. . . . . . . . . . . . . . . . . . . . 86 5.6 Comparison Between the Methods . . . . . . . . . . . . . . . . . . . . . . 90 5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6 Hubs and Communities of Financial Assets with Enhanced Self-Organizing Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.2 Value at Risk: An Introductory Guide. . . . . . . . . . . . . . . . . . . . 95 6.3 Algorithmic Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.1 Self-Organizing Maps. . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.2 The VaRSOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.