Kodsi, Costy (2017) Computational framework for fracture of graphite bricks in an AGR core. PhD thesis. http://theses.gla.ac.uk/8084/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Computational Framework for Fracture of Graphite Bricks in an AGR Core Costy Kodsi Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Engineering University of Glasgow April, 2017 Abstract Life-extensionofEDFEnergy’sexistingnuclearfleetisbasedonanassumptionofcontinued safe operation. Potential fracture of graphite bricks in the nuclear reactor core of a power stationrepresentsanunknownvariableintheequation. Anunderstandingofthenatureofthis phenomenonandtheimpactonoperationofthepowerstationisdesired. Thisworkprepares the way for the future study of fracture in graphite bricks in a reactor core subject to dy- namicexcitation. Methodologytocoupleamulti-bodyfiniteelementcontactcodetoacrack propagationcodeisthusdeveloped. Threeimportantscientificcontributionshavebeenmade: (i) An optimisation problem formulated on a smooth manifold to yield the rotation re- sponsible for infinitesimal rigid body motion. This involves an iterative scheme in the form ofNewton’smethodthattakesintoaccountthegeometryoftheunderlyingparameterspace. Therearenoissueswithsingularitiesoradditionalcomputationsineachiterationtoscalethe solutionontothemanifold. (ii) An energy consistent crack initiation criterion for brittle material where nucleation is treated as a sudden and discrete rupture event at the macroscopic level. At the heart of the criterion is the finite difference form of the energy release rate; an expression for the characteristic length is derived and the change in total potential energy is obtained from an asymptotic argument involving the topological derivative. The criterion can predict crack onset at a sharp or blunt notch. Fracture toughness and material strength are the only input requirements. (iii) Algorithms related to the detection of sharp notches in a tetrahedral finite element mesh and a general computational procedure for evaluation of non-local crack initiation cri- teria. TheonlytoolintheimplementationofthesealgorithmsisC++11. Thereisnoneedfor acomplexdatastructurestoringallincidenceinformation. Unorderedassociativecontainers in the standard library are exploited in the design of these rather efficient algorithms, which coversurfaceextractionandprovideconnectivityoftheedgesrepresentingasharpnotchtip. Ameshre-generationroutineforpurposesofrefinementatthesharpnotchtipshasalsobeen developed. ii Contents Abstract ii ListofTables viii ListofFigures ix ListofFunctions xii Acknowledgments xiii Declaration xiv Nomenclature xv 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Computationalmodellingoffracture . . . . . . . . . . . . . . . . . . . . . 3 iii 1.4.1 SOLFEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4.2 MoFEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4.3 Couplingmethodology . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Thesisoutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.6 Mathematicalprerequisitesandnotation . . . . . . . . . . . . . . . . . . . 8 2 RigidBodyMotionMitigation 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Problembackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Costfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Geometryof SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.5 Optimisationonthemanifold SO(3) . . . . . . . . . . . . . . . . . . . . . 18 2.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 CrackInitiation: ANon-LocalEnergyApproach 26 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Problembackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.1 Linearelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.2 Perturbedproblem . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.3 V-notchtipstressdistribution . . . . . . . . . . . . . . . . . . . . 29 3.3 Topologicalsensitivityanalysisofthetotalpotentialenergyproblem . . . . 32 3.3.1 Asymptoticexpansion . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 Topological-shapesensitivityanalysis . . . . . . . . . . . . . . . . 32 iv 3.3.3 Shapesensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3.4 Topologicalderivative . . . . . . . . . . . . . . . . . . . . . . . . 35 3.4 Fracturecriteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4.1 Strengthcriterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.2 Griffithenergycriterion . . . . . . . . . . . . . . . . . . . . . . . 38 3.4.3 MinimumSEDcriterion . . . . . . . . . . . . . . . . . . . . . . . 39 3.4.4 ModifiedMcClintockcriterion . . . . . . . . . . . . . . . . . . . . 41 3.4.5 Novozhilov-Seweryncriterion . . . . . . . . . . . . . . . . . . . . 42 3.5 Proposedtheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5.1 Discretecrackpropagation . . . . . . . . . . . . . . . . . . . . . . 43 3.5.2 Characteristiclength . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5.3 Energychange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.5.4 Virtualholeradius . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.5.5 Fracturecondition . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.6.2 V-notchedspecimens . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6.3 Circularnotchedspecimens . . . . . . . . . . . . . . . . . . . . . 52 3.6.4 U-notchedspecimens . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4 AutomaticSharpNotchandFractureDetection 65 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 v 4.2 Problembackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.2.1 Linearandaffinesubspaces . . . . . . . . . . . . . . . . . . . . . 69 4.2.2 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.2.3 Tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3 Sharpnotchtipdetection . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.1 Typedeclarations . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.3.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.3.3 Extractionofmeshboundaryfacets . . . . . . . . . . . . . . . . . 75 4.3.4 Extractionofmeshboundaryedges . . . . . . . . . . . . . . . . . 79 4.3.5 Edgebelongingtosharpnotchtip . . . . . . . . . . . . . . . . . . 81 4.3.6 Edgeconnectivityonasharpnotchtip . . . . . . . . . . . . . . . . 82 4.3.7 Meshre-generation . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4 Crackonsetprediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.2 ImplementationinFreeFem++ . . . . . . . . . . . . . . . . . . . . 90 4.4.3 DoubleedgeV-notchedspecimenwith2β = 40◦ . . . . . . . . . . 91 4.4.4 L-shapedspecimen . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 5 SummaryandFutureWork 95 A VectorsandTensors 98 A.1 Vectorandtensoralgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 A.2 Changeofbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 vi A.3 Pseudovectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 A.4 Gradientanddivergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 A.5 DivergencetheoremofGauss . . . . . . . . . . . . . . . . . . . . . . . . . 103 B ProofofR(a×b) = Ra×Rb 105 C V-notchStressDistributionAngularFunctions 106 D TopologicalDerivativeProofs 108 D.1 Holeextension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 D.2 Shapesensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 E CantorPairing 110 F LocalMeshRefinementinTetGen 112 References 116 vii List of Tables 3.1 Specimen(PMMA)materialproperties. . . . . . . . . . . . . . . . . . . . 49 3.2 Non-localfracturecriteriaparameters. . . . . . . . . . . . . . . . . . . . . 50 3.3 Ratiosofgeneralisedstressintensityfactorstotensileandshearloads. . . . 51 3.4 PredictedpureMode-Ifractureloads. . . . . . . . . . . . . . . . . . . . . 52 3.5 Comparisonofnumericalresults. . . . . . . . . . . . . . . . . . . . . . . . 59 viii List of Figures 1.1 (a)Fuelandinterstitialgraphitebricksand(b)inter-connectivitysystem. . . 2 1.2 Simplifiedgraphitecoresubjecttoseismicexcitation. . . . . . . . . . . . . 4 1.3 Crackpropagationingraphitebrickexample. . . . . . . . . . . . . . . . . 6 2.1 Testmodels: (a)cube;(b)quarterpartofagear;and(c)brain. . . . . . . . 22 2.2 Example of a cube subject to (a) pure rotation with v = (0,0,1)T and θ = 0.2094,(b)purestretchwith b = 0.1,and(c)pureshearwith c = 0.1. . . . 22 2.3 Rateoflocalconvergence. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Meanerrorfor(a)purestretchand(b)pureshear. . . . . . . . . . . . . . . 25 3.1 Perturbeddomain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Polarcoordinatesystemcentredatthetipofasharpnotch. . . . . . . . . . 29 3.3 Modesofdeformation(fromlefttoright): (i)Mode-I;(ii)Mode-II;and(iii) Mode-III. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Variationofexponents η and η withthewedgeangle. . . . . . . . . . . . 31 I II 3.5 Orthonormalcoordinatesystem (t,n) definedontheholeboundary ∂ω . . . 35 ξ 3.6 Acircularholeinaninfiniteplatesubjecttoremotestresses. . . . . . . . . 36 ix
Description: