DAE-F Diff erential-Algebraic Equations Forum Bernd Simeon Computational Flexible Multibody Dynamics A Diff erential-Algebraic Approach Differential-Algebraic Equations Forum Editors-in-Chief AchimIlchmann(TUIlmenau,Ilmenau,Germany) TimoReis(UniversityofHamburg,Hamburg,Germany) EditorialBoard LarryBiegler(CarnegieMellonUniversity,Pittsburgh,USA) SteveCampbell(NorthCarolinaStateUniversity,Raleigh,USA) ClausFührer(LundsUniversitet,Lund,Sweden) RoswithaMärz(HumboldtUniversitätzuBerlin,Berlin,Germany) StephanTrenn(TUKaiserslautern,Kaiserslautern,Germany) PeterKunkel(UniversitätLeipzig,Leipzig,Germany) RicardoRiaza(UniversidadPolitécnicadeMadrid,Madrid,Spain) VuHoangLinh(VietnamNationalUniversity,Hanoi,Vietnam) MatthiasGerdts(UniversitätderBundeswehrMünchen,Munich,Germany) SebastianSager(Otto-von-Guericke-UniversitätMagdeburg,Magdeburg,Germany) SebastianSchöps(TUDarmstadt,Darmstadt,Germany) BerndSimeon(TUKaiserslautern,Kaiserslautern,Germany) EvaZerz(RWTHAachen,Aachen,Germany) Differential-Algebraic Equations Forum Theseries“Differential-AlgebraicEquationsForum”isconcernedwithanalytical,algebraic, controltheoreticandnumericalaspectsofdifferentialalgebraicequations(DAEs)aswellas theirapplicationsinscienceandengineering.Itisaimedtocontainsurveyandmathematically rigorousarticles,researchmonographsandtextbooks.ProposalsareassignedtoanAssociate Editor,whorecommendspublicationonthebasisofadetailedandcarefulevaluationbyat leasttworeferees.Theappraisalswillbebasedonthesubstanceandqualityoftheexposition. Forfurthervolumes: www.springer.com/series/11221 Bernd Simeon Computational Flexible Multibody Dynamics A Differential-Algebraic Approach BerndSimeon Felix-Klein-ZentrumfürMathematik TechnischeUniversitätKaiserslautern Kaiserslautern,Germany ISBN978-3-642-35157-0 ISBN978-3-642-35158-7(eBook) DOI10.1007/978-3-642-35158-7 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2013942394 MathematicsSubjectClassification(2010): 74S05,65M12,65L80 ©Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) ToShery. Adorn thymindwithknowledge, for knowledge makeththyworth. Firdausi, Persianpoet(940–1020 CE) Preface Flexible multibody dynamics is a rapidly growing field with various applications invehicleanalysis,aerospaceengineering,robotics,andbiomechanics.Overall,the mathematical models in this field seem reasonably settled and, in computational terms,greatstrideshavebeenmadeoverthelasttwodecadesassophisticatedsoft- warepackagesarenowadayscapableofsimulatinghighlycomplexstructureswith rigidanddeformablecomponents. Written from the perspective of a numerical analyst, this monograph provides comprehensiveinformationonboththemathematicalframeworkaswellasthenu- mericalmethodsforflexiblemultibodydynamics.Suchapresentationofthesubject appears to be needed and should benefit not only graduate students and scientists working in the field but also those interested in time-dependent partial differen- tial equations and heterogeneous problems with multiple time scales. At the same time, a number of open issues at the frontiers of research are addressed by taking a differential-algebraic approach and extending it to the notion of transient saddle pointproblems. Theresultsinthisbookaretheproductofresearchworkundertakenduringthe pastfifteenyears.Partsofthematerialwerealsocoveredingraduatecoursesoffered attheUniversitätKarlsruhe,theTechnischeUniversitätMünchen,andtheTechnis- che Universität Kaiserslautern. Though it is self-contained in many respects, the textnonethelesscallsforsomebasicknowledgeofdiscretizationschemesforordi- nary differential equations and of the finite element method. Simulation examples illustratethemathematicalmodelsandthecomputationaltechniques. The interplay of modeling and numerics is a key feature in flexible multibody dynamicsandmainlydeterminesthemethodologychoseninthismonograph.This isreflectedbytheorganizationintotwomainpartswithfourchapterseach.While thefirstpartdevelopsadetailedmathematicalframeworkforsystemsofrigidand deformablebodies,thesecondintroducesdiscretizationmethodsinspaceandtime andconcentratesinparticularontheproblemofdifferenttimescales. Though this outline seems to indicate a purely mathematical treatment of the subject,thisbookisdefinitelynotintendedfortheexclusiveuseofspecialistsinnu- mericalanalysis.Onthecontrary,itshouldpromotethecommunicationbetweenthe vii viii Preface engineerandthemathematician,thusleadingtoatrulyinterdisciplinarycooperation withmutualbenefits. Theoriginofthisbookgoesbackalongway.AfterIhadcompletedthePh.D., itwasmyadvisorPeterRentropwhofirstdrewmyattentiontothefieldofflexible multibodydynamics.Itisapleasuretothankhimforhiscontinuinginterestinthe subject and for his support over the years. The next colleague and friend I would like to thank is Claus Führer, with whom I had various inspiring discussions and whocarefullyreadanearlierversionofthemanuscript.Manyothercolleagueshave alsocontributedbyprovidingsuggestionsandvaluableremarksonspecificissues: Martin Arnold, Peter Betsch, Severiano Gonzalez Pinto, Ernst Hairer, Domingo HernándezAbreu,LaurentJay,ChristianLubich,PanosPapadopoulos,LindaPet- zold,WernerC.Rheinboldt,JohnStrain,andBarbaraWohlmuth.Moreover,Iwish to sincerely thank all my master and Ph.D. students who worked in this or related fields for their collaboration, their effort, and their patience. Special thanks go to Klaus Dressler and his coworkers at the Fraunhofer ITWM in Kaiserslautern for theirhintsonpracticalaspectsandforsupplyingtherealisticexampleinSect.8.5. Lastbutnotleast,IexpressmygratitudetoDorisHemmer-KolbandKirstenHöffler forthefinalproofreadingandtoMarioAignerfromSpringerVerlagfortheefficient handlingofthemanuscript. Kaiserslautern BerndSimeon April2013 Contents PartI MathematicalModels 1 APointofDeparture . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 ElasticPendulum . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 SmallElasticDisplacement . . . . . . . . . . . . . . . . . 5 1.1.2 FloatingReferenceFrame. . . . . . . . . . . . . . . . . . 6 1.1.3 GalerkinProjection . . . . . . . . . . . . . . . . . . . . . 7 1.1.4 TimeIntegration. . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 TreatmentofConstraints . . . . . . . . . . . . . . . . . . 9 1.2.2 DiscretizationinSpaceandTime . . . . . . . . . . . . . . 10 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 RigidMultibodyDynamics . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 EquationsofMotion . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.3 RelationtoHamiltonianSystems . . . . . . . . . . . . . . 20 2.1.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 SliderCrank . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Newton–EulerEquations . . . . . . . . . . . . . . . . . . 23 2.2.3 WheelSuspension . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Differential-AlgebraicEquations . . . . . . . . . . . . . . . . . . 28 2.3.1 BasicTypesofDAEs . . . . . . . . . . . . . . . . . . . . 28 2.3.2 TheIndex . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3.3 ConstraintManifoldandLocalStateSpaceForm. . . . . . 35 2.3.4 SolutionInvariantsversusConstraints. . . . . . . . . . . . 36 2.3.5 Differential-AlgebraicEquationsinSaddlePointForm. . . 38 2.3.6 RemarksandFurtherReferences . . . . . . . . . . . . . . 39 ix x Contents 2.4 AnalysisoftheEquationsofConstrainedMechanicalMotion . . . 39 2.4.1 IndexandExistenceofSolutions . . . . . . . . . . . . . . 40 2.4.2 MinimaxCharacterizationofConstraints . . . . . . . . . . 42 2.4.3 InfluenceofPerturbations . . . . . . . . . . . . . . . . . . 43 2.4.4 AlternativeFormulations . . . . . . . . . . . . . . . . . . 44 2.4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 ElasticMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1 BasicEquationsofanElasticBody . . . . . . . . . . . . . . . . . 53 3.1.1 VariationalFormulation . . . . . . . . . . . . . . . . . . . 53 3.1.2 EquationsofMotion . . . . . . . . . . . . . . . . . . . . . 58 3.1.3 SmoothnessandAppropriateFunctionSpaces . . . . . . . 59 3.1.4 TheTraceSpace . . . . . . . . . . . . . . . . . . . . . . . 64 3.2 ConstraintsinLinearElasticity . . . . . . . . . . . . . . . . . . . 67 3.2.1 VariationalFormulation . . . . . . . . . . . . . . . . . . . 68 3.2.2 AppropriateFunctionSpaces . . . . . . . . . . . . . . . . 69 3.3 MathematicalAnalysis. . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.1 ExistenceofSolutions . . . . . . . . . . . . . . . . . . . . 71 3.3.2 InfluenceofPerturbations . . . . . . . . . . . . . . . . . . 76 3.3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4 RelatedMathematicalModels . . . . . . . . . . . . . . . . . . . . 80 3.4.1 DomainDecomposition . . . . . . . . . . . . . . . . . . . 80 3.4.2 DynamicContact . . . . . . . . . . . . . . . . . . . . . . 82 3.4.3 IncompressibleElasticBody . . . . . . . . . . . . . . . . 84 4 FlexibleMultibodyDynamics . . . . . . . . . . . . . . . . . . . . . . 87 4.1 FloatingReferenceFrame . . . . . . . . . . . . . . . . . . . . . . 87 4.1.1 VariationalFormulation . . . . . . . . . . . . . . . . . . . 88 4.1.2 EquationsofUnconstrainedMotion . . . . . . . . . . . . . 90 4.1.3 ExtensionsandSpecialCases . . . . . . . . . . . . . . . . 93 4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 WeakFormofEquationsofConstrainedMotion . . . . . . 97 4.2.2 ModelingJoints . . . . . . . . . . . . . . . . . . . . . . . 99 4.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3 FlexibleMultibodySystem . . . . . . . . . . . . . . . . . . . . . 104 4.3.1 VariationalFormulation . . . . . . . . . . . . . . . . . . . 104 4.3.2 EquationsofMotion . . . . . . . . . . . . . . . . . . . . . 106 4.4 SpecialBodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4.1 PlaneStrainandPlaneStress . . . . . . . . . . . . . . . . 109 4.4.2 BeamModel . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.5.1 SliderCrank . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.5.2 TruckModel . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.5.3 PantographandCatenary . . . . . . . . . . . . . . . . . . 117 4.6 SummaryofKeyFormulasinPartI . . . . . . . . . . . . . . . . . 120