ebook img

Computational algebraic geometry PDF

208 Pages·2003·0.988 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computational algebraic geometry

COMPUTATIONAL ALGEBRAIC GEOMETRY LONDON MATHEMATICAL SOCIETY STUDENT TEXTS Managingeditor:ProfessorJ.W.Bruce,DepartmentofMathematics, UniversityofLiverpool,UK 3 Localfields,J.W.S.CASSELS 4 Anintroductiontotwistortheory:Secondedition,S.A.HUGGETT&K.P.TOD 5 Introductiontogeneralrelativity,L.P.HUGHSTON&K.P.TOD 7 Thetheoryofevolutionanddynamicalsystems,J.HOFBAUER&K.SIGMUND 8 SummingandnuclearnormsinBanachspacetheory,G.J.O.JAMESON 9 AutomorphismsofsurfacesafterNielsenandThurston,A.CASSON&S.BLEILER 11 Spacetimeandsingularities,G.NABER 12 Undergraduatealgebraicgeometry,MILESREID 13 AnintroductiontoHankeloperators,J.R.PARTINGTON 15 Presentationsofgroups:Secondedition,D.L.JOHNSON 17 Aspectsofquantumfieldtheoryincurvedspacetime,S.A.FULLING 18 Braidsandcoverings:Selectedtopics,VAGNLUNDSGAARDHANSEN 19 Stepsincommutativealgebra,R.Y.SHARP 20 Communicationtheory,C.M.GOLDIE&R.G.E.PINCH 21 RepresentationsoffinitegroupsofLietype,FRANC¸OISDIGNE&JEANMICHEL 22 Designs,graphs,codes,andtheirlinks,P.J.CAMERON&J.H.VANLINT 23 Complexalgebraiccurves,FRANCESKIRWAN 24 Lecturesonellipticcurves,J.W.S.CASSELS 25 Hyperbolicgeometry,BIRGERIVERSEN 26 AnintroductiontothetheoryofL-functionsandEisensteinseries,H.HIDA 27 Hilbertspace:Compactoperatorsandthetracetheorem,J.R.RETHERFORD 28 Potentialtheoryinthecomplexplane,T.RANSFORD 29 Undergraduatecommutativealgebra,M.REID 31 TheLaplacianonaRiemannianmanifold,S.ROSENBERG 32 LecturesonLiegroupsandLiealgebras,R.CARTER,G.SEGAL,& I.MACDONALD 33 AprimerofalgebraicD-modules,S.C.COUTINHO 34 Complexalgebraicsurfaces,A.BEAUVILLE 35 Youngtableaux,W.FULTON 37 Amathematicalintroductiontowavelets,P.WOJTASZCZYK 38 Harmonicmaps,loopgroups,andintegrablesystems,M.GUEST 39 Settheoryfortheworkingmathematician,K.CIESIELSKI 40 Ergodictheoryanddynamicalsystems,M.POLLICOTT&M.YURI 41 Thealgorithmicresolutionofdiophantineequations,N.P.SMART 42 Equilibriumstatesinergodictheory,G.KELLER 43 Fourieranalysisonfinitegroupsandapplications,AUDREYTERRAS 44 Classicalinvarianttheory,PETERJ.OLVER 45 Permutationgroups,P.J.CAMERON 46 Riemannsurfaces:APrimer,A.BEARDON 47 Intoductorylecturesonringsandmodules,J.BEACHY 48 Settheory,A.HAJNA´L&P.HAMBURGER 49 K-theoryforC∗-algebras,M.RORDAM,F.LARSEN,&N.LAUSTSEN 50 Abriefguidetoalgebraicnumbertheory,H.P.F.SWINNERTON-DYER 51 Stepsincommutativealgebra:Secondedition,R.Y.SHARP 52 FiniteMarkovchainsandalgorithmicapplications,O.HAGGSTROM 53 Theprimenumbertheorem,G.J.O.JAMESON 54 Topicsingraphautomorphismsandreconstruction,J.LAURI&R.SCAPELLATO 55 Elementarynumbertheory,grouptheory,andRamanujangraphs,G.DAVIDOFF, P.SARNAK,&A.VALETTE COMPUTATIONAL ALGEBRAIC GEOMETRY HAL SCHENCK TexasA&MUniversity    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge  , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521829649 © Hal Schenck 2003 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2003 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. ToMomandDad Contents Preface pagexi 1 BasicsofCommutativeAlgebra 1 1.1 IdealsandVarieties 2 1.2 NoetherianRingsandtheHilbertBasisTheorem 4 1.3 AssociatedPrimesandPrimaryDecomposition 6 1.4 TheNullstellensatzandZariskiTopology 12 2 ProjectiveSpaceandGradedObjects 18 2.1 ProjectiveSpaceandProjectiveVarieties 18 2.2 GradedRingsandModules,HilbertFunctionandSeries 21 2.3 LinearAlgebraFlashback,HilbertPolynomial 26 3 FreeResolutionsandRegularSequences 34 3.1 FreeModulesandProjectiveModules 35 3.2 FreeResolutions 36 3.3 RegularSequences,MappingCone 42 4 Gro¨bnerBasesandtheBuchbergerAlgorithm 50 4.1 Gro¨bnerBases 51 4.2 MonomialIdealsandApplications 55 4.3 SyzygiesandGro¨bnerBasesforModules 58 4.4 ProjectionandElimination 60 5 Combinatorics,TopologyandtheStanley–ReisnerRing 64 5.1 SimplicialComplexesandSimplicialHomology 65 5.2 TheStanley–ReisnerRing 72 5.3 AssociatedPrimesandPrimaryDecomposition 77 6 Functors:Localization,Hom,andTensor 80 6.1 Localization 81 6.2 TheHomFunctor 84 6.3 TensorProduct 88 7 GeometryofPointsandtheHilbertFunction 92 7.1 HilbertFunctionsofPoints,Regularity 92 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.