Computation and representation in emotion and decision-making Archy Otto de Berker A dissertation submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy Institute of Neurology UCL November 2016 1 I, Archy Otto de Berker, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. _______________________________________ Archy Otto de Berker, November 2016 2 Abstract This thesis deals with three components of an organism’s interactions with its environment: learning, decision making, and emotions. In a series of 5 studies, I detail relationships between these processes, and investigate the representation and computations whereby they are achieved. In the first experiment I show how subjective wellbeing is influenced by one’s own rewards and expectations, but also those of other people. Furthermore, I find that parameter estimates of empathy predict decision-making in a distinct test of economic generosity. In my second study, I ask how stressful experiences modulate subsequent learning, detailing a specific impairment in action-learning under stress which also manifests itself in altered pupillary responses. In the third, I use a hierarchical model of learning to show that subjective uncertainty in aversive contexts predicts several dimensions of acute stress responses. Furthermore, I find that individuals who show greater uncertainty-tuning in their stress responses are better at predicting the presence of threat. In the final pair of studies I ask how decision variables for value-based choice are represented in the brain. I describe the combination of quality and quantity into value estimates in humans, revealing a central role for the Anterior Cingulate Cortex in value integration using functional magnetic resonance imaging. I next characterize the neural code for value in non-human primate frontal cortex, using single-neuron data from collaborators. These two studies provide convergent evidence that the value code may be more diverse and non-linear than previously reported, potentially conferring the ability to incorporate uncertainty signals directly in the activity of value coding neurons. 3 Table of contents Abstract ............................................................................................................................................ 3 Table of contents ............................................................................................................................ 4 Acknowledgements ........................................................................................................................ 6 Figures and tables ........................................................................................................................... 8 Chapter 1: General introduction ................................................................................................. 11 1.1 Preliminaries ............................................................................................................................. 11 1.2 Value and decisions .................................................................................................................. 13 1.3 Learning from experience ....................................................................................................... 17 1.4 Uncertainty in the environment, decision-making, and the brain ...................................... 29 1.5 Emotions: causes and consequences .................................................................................... 43 1.6 References ................................................................................................................................. 50 Chapter 2: The social contingency of momentary subjective well-being .............................. 59 2.1 Abstract ...................................................................................................................................... 59 2.2 Introduction ............................................................................................................................... 60 2.3 Methods ..................................................................................................................................... 62 2.4 Results ........................................................................................................................................ 65 2.5 Discussion .................................................................................................................................. 73 2.6 References ................................................................................................................................. 76 Chapter 3: Acute stress selectively impairs learning to act .................................................... 79 3.1 Abstract ...................................................................................................................................... 79 3.2 Introduction ............................................................................................................................... 80 3.3 Methods ..................................................................................................................................... 82 3.4 Results ........................................................................................................................................ 89 3.5 Discussion .................................................................................................................................. 98 3.6 References ............................................................................................................................... 102 Chapter 4: Linking computations of uncertainty to acute stress responses in humans ... 105 4.1 Abstract .................................................................................................................................... 105 4 4.2 Introduction ............................................................................................................................. 106 4.3 Methods ................................................................................................................................... 109 4.4 Results ...................................................................................................................................... 121 4.5 Discussion ................................................................................................................................ 131 4.6 Supplementary figures ........................................................................................................... 134 4.7 References ............................................................................................................................... 143 Chapter 5: Formation of value from quality and quantity in human decision making ..... 146 5.1 Abstract .................................................................................................................................... 146 5.2 Introduction ............................................................................................................................. 147 5.3 Methods ................................................................................................................................... 151 5.4 Results ...................................................................................................................................... 159 5.5 Discussion ................................................................................................................................ 176 5.6 References ............................................................................................................................... 181 Chapter 6: Diversity of value-tuning in primate prefrontal cortex ...................................... 188 6.1 Abstract .................................................................................................................................... 188 6.2 Introduction ............................................................................................................................. 189 6.3 Methods ................................................................................................................................... 192 6.4 Results ...................................................................................................................................... 200 6.5 Discussion ................................................................................................................................ 213 6.6 References ............................................................................................................................... 218 Chapter 7: General discussion ................................................................................................... 223 7.1 Optimality’s ever widening net .............................................................................................. 223 7.2 Value: economics, nature, and neural networks ................................................................ 224 7.3 Models as bridges and sirens ................................................................................................ 226 7.4 Concluding remarks ............................................................................................................... 227 7.5 References ............................................................................................................................... 228 5 Acknowledgements I have had the pleasure of belonging to two laboratories throughout my time at UCL. Both the Bestmann and Dolan labs have been fantastic places to work, and I’m thankful to all of the people who made each of them so stimulating and convivial. I’d also like to thank the technical staff who made my experiments possible and even pleasurable. My primary supervisor Sven has been extremely accommodating, encouraging me to pursue my own ideas and supporting me with remarkably consistent good humour. His optimism and courage have provided a steady source of encouragement throughout. Sven taught me to stay close to the data and has emphasized how best to spend my energy and time, neither of which are as infinite as I initially believed. I have felt similarly empowered by Ray, who has advised and supported me both directly and through his unusual ability to assemble an unbelievably talented group of scientists. I feel fortunate to have enjoyed such excellent relationships with not one but two remarkable supervisors. I have plundered the time of many kind colleagues over the last four years, but none quite so rapaciously as that of Robb Rutledge. With characteristic imperturbability, gentleness, and diligence, he has instructed and inspired at every step of the journey. He has been the first port of call whenever something has gone awry and a source of authority on everything from participant instruction sheets to how to kill a sheep. I am also very grateful indeed for having been involved in his tireless public engagement efforts. Our work at the Roundhouse was one of the highlights of my PhD. Thanks for being such an exemplary mentor and role model. If Ray and Sven are my scientific fathers and Robb an adored uncle, Zeb Kurth-Nelson has been an older brother. The many hours we have spent together in the lab and outside it have been full of grazed knees, lewd jokes, and finding interesting things under rocks. I have learned a tremendous amount about thinking, science, and thoughtfulness from Zeb, and I look forward to learning more. Any ideas in this thesis that might be considered interesting are probably Zeb’s. I am much indebted to Laurence, Nish, and Steve, who were generous with their data and their time in helping me to understand it. I am in awe of the craft and patience with which they do 6 science, and the quality of the data that results. It has been a privilege to think about their neurons with them, and to occasionally make cups of coffee for Laurence. I have made too many friends at UCL to thank them all. However, Federico deserves a special mention as a parmesan importer par excellence and a superb housemate. He and Fran have provided the camaraderie and the Michelin-starred lunches necessary to navigate the occasionally rough waters of a doctorate, with Peter battering me on the tennis court whenever I started to get too cocky. When the time came to write the thesis, they were ably succeeded by my parents, who provided the craft beer, homemade bread, and trips to the lido sufficient to get me over the line. It seems traditional to end by acknowledging the contribution made by one’s partner. Steph will take some pride in confessing that she has chiefly strived to thwart my academic ambitions by coaxing me up mountains, into vans, and down ski slopes. I might have got to the end of this degree quicker were it not for Steph; or, more likely, I’d never have got to the end of it at all. 7 Figures and tables Figure 1.1 | Framework for this thesis .................................................................................................. 12 Figure 1.2 | Rescorla-Wagner captures classical conditioning ........................................................... 19 Figure 1.3 | Dopamine neurons convey an RPE signal ....................................................................... 23 Figure 1.4 | Integrating multiple sources of evidence ........................................................................ 30 Figure 1.5 | Combining priors and likelihoods in space ..................................................................... 32 Figure 1.6 | The Hierarchical Gaussian Filter ....................................................................................... 36 Figure 1.7 | Theoretical and experimental work on uncertainty coding .......................................... 39 Figure 2.1 | Experimental design ........................................................................................................... 61 Figure 2.2 | Descriptive analysis ............................................................................................................ 68 Figure 2.3 | Model-based analysis of happiness ................................................................................. 69 Figure 3.1 | Experimental design ........................................................................................................... 81 Figure 3.2 | Confirmation of stress induction. ..................................................................................... 91 Figure 3.3 | Stress impairs learning to act ............................................................................................ 93 Figure 3.4 | Stress does not affect the parameters of a Pavlovian learning model ........................ 95 Figure 3.5 | Stress alters pupillary responses to action ..................................................................... 97 Figure 4.1 | Task structure and stress measures .............................................................................. 108 Figure 4.2 | Modelling of learning and stress .................................................................................... 123 Figure 4.3 | Assessing models of learning .......................................................................................... 124 Figure 4.4 | Irreducible uncertainty predicts subjective stress ........................................................ 126 Figure 4.5 | Physiological responses reflect uncertainty and surprise. .......................................... 129 Figure 4.6 | Relationship between uncertainty sensitivity and task performance ........................ 130 8 Supplementary Figure 4.1 | Assessing alternative models of subjective stress ............................ 134 Supplementary Figure 4.2 | Additional physiological stress data ................................................... 135 Supplementary Figure 4.3 | Luminance fitting procedure used for model of pupil diameter .... 136 Supplementary Figure 4.4 | Pupillary and skin conductance sensitivity to uncertainty are uncorrelated ................................................................................................................................... 137 Supplementary Figure 4.5 | Mean and variance of subjective stress ratings are unrelated to performance ................................................................................................................................... 137 Supplementary Figure 4.6 | Uncertainty-tuning in the pupil is inversely correlated with Intolerance of Uncertainty ............................................................................................................ 138 Figure 5.1 | Experimental procedure .................................................................................................. 160 Figure 5.2 | Example participants from behavioural experiment ................................................... 161 Figure 5.3 | Selected subjects for scanning experiment .................................................................. 162 Figure 5.4 | Behavioural results for subjects in scanning experiment. .......................................... 163 Figure 5.5 | Representation of quality, quantity, and their interaction .......................................... 165 Figure 5.6 | Computation of utility from component parts in the anterior cingulate cortex ...... 168 Figure 5.7 | Neural quantity sensitivity relate to choice predictability ........................................... 169 Figure 5.8 | Repetition suppression for value in the anterior cingulate cortex ............................. 171 Figure 5.9 | Modelling of repetition suppression: dependence on tuning and adaptation type 173 Figure 5.10 | Dissecting divisive vs. subtractive repetition suppression effects ........................... 175 Figure 6.1 | Gaussian tuning for orientation and linear tuning for value ...................................... 191 Figure 6.2 | Experimental design ......................................................................................................... 193 Figure 6.3 | Recording locations .......................................................................................................... 195 9 Figure 6.4 | Cue 1 responses ............................................................................................................... 201 Figure 6.5 | Removing linear and monotonic value representations ............................................. 204 Figure 6.6 | Visualizing tuning curves ................................................................................................. 206 Figure 6.7 | Cross-attribute distance plots by area ........................................................................... 207 Figure 6.8 | ACC and OFC contain Gaussian-tuned neurons ........................................................... 208 Figure 6.9 | Control analysis: correlating probability and magnitude tuning ................................ 210 Figure 6.10 | Population decoding of value after linear information removal .............................. 211 Figure 6.11 | Neural coding of pitch and volume .............................................................................. 217 Table 2.1| Bayesian model comparison analysis ................................................................................ 73 Table 3.1 | Cardiovascular stress measures ........................................................................................ 92 Supplementary Table 4.1 | Parameters used in pupil model .......................................................... 139 Supplementary Table 4.2 | Parameters used in skin conductance model .................................... 140 Supplementary Table 4.3 | Hierarchical Gaussian Filter details ...................................................... 141 Supplementary Table 4.4 | Details of each learning model ............................................................. 142 10
Description: