ebook img

Computability and logic PDF

370 Pages·2002·1.769 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Computability and logic

This page intentionally left blank ComputabilityandLogic,FourthEdition ThisfourtheditionofoneoftheclassiclogictextbookshasbeenthoroughlyrevisedbyJohn Burgess. The aim is to increase the pedagogical value of the book for the core audience ofstudentsofphilosophyandforstudentsofmathematicsandcomputerscienceaswell. Thisbookhasbecomeaclassicbecauseofitsaccessibilitytostudentswithoutamathe- maticalbackground,andbecauseitcoversnotsimplythestapletopicsofanintermediate logic course such as Go¨del’s incompleteness theorems, but also a large number of op- tional topics from Turing’s theory of computability to Ramsey’s theorem. John Burgess has enhanced the book by adding a selection of problems at the end of each chapter and byreorganizingandrewritingchapterstomakethemmoreindependentofeachotherand thustoincreasetherangeofoptionsavailabletoinstructorsastowhattocoverandwhatto defer. “...givesanexcellentcoverageofthefundamentaltheoreticalresultsaboutlogicinvolving computability,undecidability,axiomatization,definability,incompleteness,etc.”American MathematicalMonthly “Thewritingstyleisexcellent:althoughmanyexplanationsareformal,theyareperfectly clear.Modern,elegantproofshelpthereaderunderstandtheclassictheoremsandkeepthe booktoareasonablelength.”ComputingReviews “...avaluableassettothosewhowanttoenhancetheirknowledgeandstrengthentheirideas intheareasofartificialintelligence,philosophy,theoryofcomputing,discretestructures, mathematicallogic.Itisalsousefultoteachersforimprovingtheirteachingstyleinthese subjects.”ComputerEngineering Computability and Logic Fourth Edition GEORGE S. BOOLOS JOHN P. BURGESS PrincetonUniversity RICHARD C. JEFFREY    Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge  , United Kingdom Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521809757 © George S. Boolos, John P. Burgess, Richard Jeffrey 2002 This book is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2002 - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback - ---- paperback - --- paperback Cambridge University Press has no responsibility for the persistence or accuracy of s for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. For SALLY and AIGLI and EDITH Contents Preface pagex COMPUTABILITY THEORY 1 Enumerability 3 1.1 Enumerability 3 1.2 EnumerableSets 7 2 Diagonalization 16 3 TuringComputability 23 4 Uncomputability 35 4.1 TheHaltingProblem 35 4.2 TheProductivityFunction 40 5 AbacusComputability 45 5.1 AbacusMachines 45 5.2 SimulatingAbacusMachinesbyTuringMachines 51 5.3 TheScopeofAbacusComputability 57 6 RecursiveFunctions 63 6.1 PrimitiveRecursiveFunctions 63 6.2 Minimization 70 7 RecursiveSetsandRelations 73 7.1 RecursiveRelations 73 7.2 SemirecursiveRelations 80 7.3 FurtherExamples 83 8 EquivalentDefinitionsofComputability 88 8.1 CodingTuringComputations 88 8.2 UniversalTuringMachines 94 8.3 RecursivelyEnumerableSets 96 vii viii CONTENTS BASIC METALOGIC 9 APre´cisofFirst-OrderLogic:Syntax 101 9.1 First-OrderLogic 101 9.2 Syntax 106 10 APre´cisofFirst-OrderLogic:Semantics 114 10.1 Semantics 114 10.2 MetalogicalNotions 119 11 TheUndecidabilityofFirst-OrderLogic 126 11.1 LogicandTuringMachines 126 11.2 LogicandPrimitiveRecursiveFunctions 132 12 Models 137 12.1 TheSizeandNumberofModels 137 12.2 EquivalenceRelations 142 12.3 TheLo¨wenheim–SkolemandCompactnessTheorems 146 13 TheExistenceofModels 153 13.1 OutlineoftheProof 153 13.2 TheFirstStageoftheProof 156 13.3 TheSecondStageoftheProof 157 13.4 TheThirdStageoftheProof 160 13.5 NonenumerableLanguages 162 14 ProofsandCompleteness 166 14.1 SequentCalculus 166 14.2 SoundnessandCompleteness 174 14.3 OtherProofProceduresandHilbert’sThesis 179 15 Arithmetization 187 15.1 ArithmetizationofSyntax 187 15.2 Go¨delNumbers 192 15.3 MoreGo¨delNumbers 196 16 RepresentabilityofRecursiveFunctions 199 16.1 ArithmeticalDefinability 199 16.2 MinimalArithmeticandRepresentability 207 16.3 MathematicalInduction 212 16.4 RobinsonArithmetic 215 17 Indefinability,Undecidability,Incompleteness 221 17.1 TheDiagonalLemmaandtheLimitativeTheorems 221 17.2 UndecidableSentences 225 17.3 UndecidableSentenceswithouttheDiagonalLemma 227 18 TheUnprovabilityofConsistency 233

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.