ebook img

Compressive Sensing for Wireless Networks PDF

310 Pages·2013·6.007 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compressive Sensing for Wireless Networks

more information - www.cambridge.org/9781107018839 CompressiveSensingforWirelessNetworks Compressive sensing is a new signal-processing paradigm that aims to encode sparse signalsbyusingfarlowersamplingratesthanthoseinthetraditionalNyquistapproach. It helps acquire, store, fuse and process large data sets efficiently and accurately. This method,whichlinksdataacquisition,compression,dimensionalityreduction,andopti- mization, has attracted significant attention from researchers and engineers in various areas. This comprehensive reference develops a unified view on how to incorporate efficiently the idea of compressive sensing over assorted wireless network scenarios, interweaving concepts from signal processing, optimization, information theory, com- munications, and networking to address the issues in question from an engineering perspective.Itenablesstudents,researchers,andcommunicationsengineerstodevelop a working knowledge of compressive sensing, including background on the basics of compressive sensing theory, an understanding of its benefits and limitations, and the skillsneededtotakeadvantageofcompressivesensinginwirelessnetworks. ZhuHanisanAssociateProfessorintheElectricalandComputerEngineeringDepart- mentattheUniversityofHouston,Texas.HereceivedanNSFCAREERawardin2010 and the IEEE Fred W. Ellersick Prize in 2011. He has co-authored papers that won the best paper award at the IEEE International Conference on Communications 2009, the 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, andWirelessNetworks(WiOpt09),theIEEEWirelessCommunicationandNetworking Conference,2012andIEEESmartgridcommConference,2012. HushengLiisanAssistantProfessorintheElectricalandComputerEngineeringDepart- mentattheUniversityofTennessee.HereceivedtheBestPaperAwardoftheEURASIP JournalonWirelessCommunications andNetworkingin2005(togetherwithhisPhD advisor,ProfessorH.V.Poor),theBestDemoAwardofIEEEGlobecomin2010,and theBestPaperAwardatIEEEICCin2011. WotaoYin is an Associate Professor at the Department of Computational and Applied MathematicsatRiceUniversity.HewonanNSFCAREERawardin2008andanAlfredP. SloanResearchFellowshipin2009. Compressive Sensing for Wireless Networks ZHU HAN UniversityofHouston,USA HUSHENG LI UniversityofTennessee,USA WOTAO YIN RiceUniversity,USA CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107018839 (cid:2)C CambridgeUniversityPress2013 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2013 PrintedandboundintheUnitedKingdombytheMPGBooksGroup AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Han,Zhu,1974– Compressivesensingforwirelessnetworks/ZhuHan,UniversityofHouston,USA,HushengLi,University ofTennessee,USA,WotaoYin,RiceUniversity,USA. pages cm Includesbibliographicalreferencesandindex. ISBN978-1-107-01883-9(hardback) 1.Codingtheory. 2.Datacompression(Telecommunication) 3.Signalprocessing–Digitaltechniques. 4.Sampling(Statistics) I.Li,Husheng,1975– II.Yin,Wotao. III.Title. TK5102.92.H355 2013 621.39(cid:3)81–dc23 2013000272 ISBN 978-1-107-01883-9Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. ForthepeopleImetintheBarneoicecamp,NorthPole,whoshowedme thebraverytoconqueranydifficulty,whichencouragedmetofinishthis challengingbook ZhuHan Tomywife,MinDuan,andmyson,SiyiLi HushengLi Tothosewhoadvocateforintellectualhonestyanddefendacademicintegrity WotaoYin Contents Preface pagexiii 1 Introduction 1 1.1 Motivationandobjectives 1 1.2 Outline 2 2 Overviewofwirelessnetworks 6 2.1 Wirelesschannelmodels 6 2.1.1 Radiopropagation 6 2.1.2 Interferencechannel 11 2.2 Categorizationofwirelessnetworks 13 2.2.1 3Gcellularnetworksandbeyond 13 2.2.2 WiMAXnetworks 17 2.2.3 WiFinetworks 19 2.2.4 Wirelesspersonalareanetworks 22 2.2.5 Wirelessadhocnetworks 28 2.2.6 Wirelesssensornetworks 32 2.3 Advancedwirelesstechnology 36 2.3.1 OFDMtechnology 36 2.3.2 Multipleantennasystem 39 2.3.3 Cognitiveradios 41 2.3.4 Schedulingandmultipleaccess 43 2.3.5 Wirelesspositioningandlocalization 45 PartI CompressiveSensingTechnique 3 Compressivesensingframework 51 3.1 Background 51 3.2 Traditionalsensingversuscompressivesensing 56 3.3 Sparserepresentation 57 3.3.1 Extensionsofsparsemodels 59 viii Contents 3.4 CSencodinganddecoding 60 3.5 Examples 67 4 Sparseoptimizationalgorithms 69 4.1 Abriefintroductiontooptimization 70 4.2 Sparseoptimizationmodels 73 4.3 Classicsolvers 74 4.4 Shrinkageoperation 76 4.4.1 Generalizationsofshrinkage 78 4.5 Prox-linearalgorithms 79 4.5.1 Forward-backwardoperatorsplitting 80 4.5.2 Examples 81 4.5.3 Convergencerates 83 4.6 Dualalgorithms 83 4.6.1 Dualformulations 84 4.6.2 TheaugmentedLagrangianmethod 85 4.6.3 Bregmanmethod 86 4.6.4 Bregmaniterationsanddenoising 88 4.6.5 LinearizedBregmanandaugmentedmodels 90 4.6.6 Handlingcomplexdataandvariables 92 4.7 Alternatingdirectionmethodofmultipliers 93 4.7.1 Framework 94 4.7.2 ApplicationsofADMinsparseoptimization 96 4.7.3 Applicationsindistributedoptimization 100 4.7.4 Applicationsindecentralizedoptimization 102 4.7.5 Convergencerates 102 4.8 (Block)coordinateminimizationandgradientdescent 103 4.9 Homotopyalgorithmsandparametricquadraticprogramming 105 4.10 Continuation,varyingstepsizes,andlinesearch 107 4.11 Non-convexapproachesforsparseoptimization 109 4.12 Greedyalgorithms 110 4.12.1 Greedypursuitalgorithms 110 4.12.2 Iterativesupportdetection 112 4.12.3 Hardthresholding 113 4.13 Algorithmsforlow-rankmatrices 114 4.14 Howtochooseanalgorithm 115 5 CSanalog-to-digitalconverter 118 5.1 TraditionalADCbasics 118 5.1.1 Samplingtheorem 118 5.1.2 Quantization 120 5.1.3 Practicalimplementation 121

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.