ebook img

Compressible Navier-Stokes Equations: Theory and Shape Optimization PDF

469 Pages·2012·2.883 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compressible Navier-Stokes Equations: Theory and Shape Optimization

M o n o g r a f i e M a t e m a t y c z n e Instytut Matematyczny Polskiej Akademii Nauk (IMPAN) Volume 73 (New Series) Founded in 1932 by S. Banach, B. Knaster, K. Kuratowski, S. Mazurkiewicz, W. Sierpinski, H. Steinhaus Managing Editor: Marek Bozejko (Wroclaw University, Poland) Editorial Board: Jean Bourgain (IAS, Princeton, USA) Joachim Cuntz (University of Münster, Germany) Ursula Hamenstädt (University of Bonn, Germany) Gilles Pisier (Texas A&M University, USA) Piotr Pragacz (IMPAN, Poland) Andrew Ranicki (University of Edinburgh, UK) Slawomir Solecki (University of Illinois, Urbana-Champaign, USA) Przemyslaw Wojtaszczyk (IMPAN and Warsaw University, Poland) Jerzy Zabczyk (IMPAN, Poland) Henryk Zoladek (Warsaw University, Poland) Volumes 31–62 of the series Monografie Matematyczne were published by PWN – Polish Scientific Publishers, Warsaw Pavel Plotnikov • Jan Sokołowski Compressible Navier–Stokes Equations Theory and Shape Optimization Pavel Plotnikov Jan Sokołowski Siberian Branch of RAS Institut Élie Cartan de Nancy, UMR 7502 Lavrentyev Institute of Hydrodynamics Université de Lorraine, CNRS Novosibirsk Vandœuvre-lès-Nancy Russia France ISBN 978-3-0348-0366-3 ISBN 978-3-0348-0367-0 (eBook) DOI 10.1007/978-3-0348-0367-0 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2012945409 Mathematics Subject Classification (2010 ): 35Q30, 35Q35, 35Q93, 49Q10, 49Q12, 49K20, 49K40, 76N10, 76N25 © Springer Basel 2012 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer Basel AG is part of Springer Science+Business Media (www.birkhauser-science.com) Contents Preface ix Introduction xi 1 Preliminaries 1 1.1 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Banach spaces . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Interpolation of Banach spaces . . . . . . . . . . . . . . . . 6 1.1.3 Invertibility of linear operators . . . . . . . . . . . . . . . . 8 1.1.4 Fixed point theorems . . . . . . . . . . . . . . . . . . . . . 8 1.2 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Hölder spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Measure and integral . . . . . . . . . . . . . . . . . . . . . . 12 1.2.3 Lebesgue measure in Rd. Lebesgue spaces . . . . . . . . . . 16 1.3 Compact sets in Lp spaces . . . . . . . . . . . . . . . . . . . . . . . 20 1.3.1 Functions of bounded variation . . . . . . . . . . . . . . . . 20 1.3.2 Lp spaces of Banach space valued functions . . . . . . . . . 23 1.4 Young measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.5 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.6 Mollifiers and DiPerna & Lions lemma . . . . . . . . . . . . . . . . 35 1.7 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . 39 1.7.1 Elliptic equations . . . . . . . . . . . . . . . . . . . . . . . . 39 1.7.2 Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . 42 1.7.3 Parabolic equations . . . . . . . . . . . . . . . . . . . . . . 43 2 Physical background 45 2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.1 Isentropic flows. Compressible Navier-Stokes equations . . . 47 2.2 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . 48 2.3 Power and work of hydrodynamic forces . . . . . . . . . . . . . . . 50 2.4 Navier-Stokes equations in a moving frame . . . . . . . . . . . . . 51 2.5 Flow around a moving body . . . . . . . . . . . . . . . . . . . . . . 53 v vi Contents 3 Problem formulation 57 3.1 Weak solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2 Renormalized solutions . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Work functional. Optimization problem . . . . . . . . . . . . . . . 61 4 Basic statements 63 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2 Bounded energy functions . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Functions of bounded mass dissipation rate . . . . . . . . . . . . . 68 4.4 Compactness properties . . . . . . . . . . . . . . . . . . . . . . . . 69 4.4.1 Two lemmas on compensated compactness . . . . . . . . . . 71 4.4.2 Proof of Theorem 4.4.2 . . . . . . . . . . . . . . . . . . . . 76 4.5 Basic integral identity . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.6 Continuity of viscous flux . . . . . . . . . . . . . . . . . . . . . . . 87 4.7 Viscous flux. Localization . . . . . . . . . . . . . . . . . . . . . . . 95 5 Nonstationary case. Existence theory 99 5.1 Problem formulation. Results . . . . . . . . . . . . . . . . . . . . . 99 5.2 Regularized equations . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3 Passage to the limit. The first level . . . . . . . . . . . . . . . . . . 118 5.3.1 Step 1. Convergence of densities and momenta . . . . . . . 121 5.3.2 Step 2. Weak convergence of the kinetic energy tensor . . . 122 5.3.3 Step 3. Weak limits of ε∇(cid:3) ⊗u . . . . . . . . . . . . . . 124 n n 5.3.4 Step 4. Proof of estimates (5.3.8–5.3.9) . . . . . . . . . . . . 125 5.3.5 Step 5. Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . 129 5.3.6 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . . . . 130 5.3.7 Local pressure estimate . . . . . . . . . . . . . . . . . . . . 132 5.3.8 Normal derivative of the density . . . . . . . . . . . . . . . 136 5.4 Passage to the limit. The second level . . . . . . . . . . . . . . . . 139 5.5 Passage to the limit. The third level . . . . . . . . . . . . . . . . . 157 6 Pressure estimate 167 7 Kinetic theory. Fast density oscillations 175 7.1 Problem formulation. Main results . . . . . . . . . . . . . . . . . . 175 7.2 Proof of Theorem 7.1.9. . . . . . . . . . . . . . . . . . . . . . . . . 185 7.3 Proof of Theorem 7.1.12 . . . . . . . . . . . . . . . . . . . . . . . . 204 7.4 Adiabatic exponent γ >3/2 . . . . . . . . . . . . . . . . . . . . . . 223 8 Domain convergence 225 8.1 Hausdorff and Kuratowski-Mosco convergences . . . . . . . . . . . 225 8.2 Capacity, quasicontinuity and fine topology . . . . . . . . . . . . . 229 8.3 Applications to flow around an obstacle . . . . . . . . . . . . . . . 235 8.4 S-compact classes of admissible obstacles . . . . . . . . . . . . . . 244 Contents vii 9 Flow around an obstacle. Domain dependence 249 9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 9.2 Existence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 9.3 Main stability theorem . . . . . . . . . . . . . . . . . . . . . . . . . 255 10 Existence theory in nonsmooth domains 281 10.1 Existence theory in nonsmooth domains . . . . . . . . . . . . . . . 281 10.2 Continuity of the work functional . . . . . . . . . . . . . . . . . . . 282 10.3 Applications of the stability theorem to optimization problems . . 296 11 Sensitivity analysis. Shape gradient of the drag functional 299 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 11.1.1 Change of variables in Navier-Stokes equations . . . . . . . 300 11.1.2 Extended problem. Perturbation theory . . . . . . . . . . . 304 11.2 Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . 308 11.2.1 Function spaces. Results . . . . . . . . . . . . . . . . . . . . 308 11.2.2 Step 1. Estimates of composite functions . . . . . . . . . . . 312 11.2.3 Step 2. Stokes equations . . . . . . . . . . . . . . . . . . . . 314 11.2.4 Step 3. Transport equations . . . . . . . . . . . . . . . . . . 315 11.2.5 Step 4. Fixed point scheme. Estimates . . . . . . . . . . . . 319 11.2.6 Step 5. Proof of Theorem 11.2.6 . . . . . . . . . . . . . . . 328 11.3 Dependence of solutions on N . . . . . . . . . . . . . . . . . . . . . 330 11.3.1 Problem formulation. Basic equations. Transposed problem 330 11.3.2 Transposed problem . . . . . . . . . . . . . . . . . . . . . . 333 11.3.3 Special dual space . . . . . . . . . . . . . . . . . . . . . . . 347 11.3.4 Very weak solutions . . . . . . . . . . . . . . . . . . . . . . 348 11.3.5 Uniqueness and existence. Main theorem. . . . . . . . . . . 354 11.4 Shape derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355 11.4.1 Preliminaries. Results . . . . . . . . . . . . . . . . . . . . . 355 11.4.2 Proof of Theorem 11.4.6 . . . . . . . . . . . . . . . . . . . . 359 11.4.3 Conclusion. Material and shape derivatives . . . . . . . . . 370 11.5 Shape derivative of the drag functional. Adjoint state. . . . . . . . 371 12 Transport equations 377 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377 12.2 Existence theory in Sobolev spaces . . . . . . . . . . . . . . . . . . 380 12.3 Proof of Theorem 12.2.3 . . . . . . . . . . . . . . . . . . . . . . . . 382 12.3.1 Normal coordinates . . . . . . . . . . . . . . . . . . . . . . 383 12.3.2 Model equation . . . . . . . . . . . . . . . . . . . . . . . . . 384 12.3.3 Local estimates . . . . . . . . . . . . . . . . . . . . . . . . . 385 12.3.4 Estimates near the inlet . . . . . . . . . . . . . . . . . . . . 390 12.3.5 Partition of unity . . . . . . . . . . . . . . . . . . . . . . . . 392 12.3.6 Proofs of Lemmas 12.3.2 and 12.3.3 . . . . . . . . . . . . . 395 12.3.7 Proof of Lemma 12.3.4 . . . . . . . . . . . . . . . . . . . . . 398 viii Contents 13 Appendix 407 13.1 Proof of Lemma 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 407 13.2 Normal coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 411 13.3 Geometric results. Approximation of unity . . . . . . . . . . . . . . 413 13.4 Singular limits of normal derivatives . . . . . . . . . . . . . . . . . 418 Bibliography 441 Notation 451 Index 453 Preface This book is a result of scientific collaboration, for more than ten years, between threecountries,France,RussiaandPoland.Themainsupportforthejointresearch comesfromUniversitédeLorraine,InstitutÉlieCartanandfromCentreNationale de la Recherche Scientifique (CNRS) for the visits of Pavel I. Plotnikov in France. Also the support of the Systems Research Institute of the Polish Academy of Sci- ences for the visits in Poland is acknowledged. The research of Pavel I. Plotnikov was partially supported by Contract 02.740.11.0617 with the Ministry of Educa- tion and Science of the Russian Federation and by grant 10-01-00447-a from the Russian Foundation of Basic Research, while the research of Jan Sokołowski was partiallysupportedbytheprojectANR-09-BLAN-0037Geometric analysis of op- timal shapes (GAOS) financed by the French Agence Nationale de la Recherche (ANR) and by grant N51402132/3135 of the Polish Ministerstwo Nauki i Szkol- nictwa Wyższego “Optymalizacja z wykorzystaniem pochodnej topologicznej dla przepływówwośrodkachściśliwych” intheSystemsResearchInstituteofthePol- ish Academy of Sciences. The monograph is published in the Polish mathematical seriesbyBirkhäuserBasel.TheauthorsaregreatlyindebtedtoJerzyTrzeciakfor his careful work on editing the monograph, and his patience. Pavel Plotnikov Lavrentyev Institute of Hydrodynamics and Novosibirsk State University Jan Sokołowski Université de Lorraine, Institut Élie Cartan and Systems Research Institute of the Polish Academy of Sciences Nancy, Novosibirsk and Warsaw, March 2012 ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.