2.2. | IL MARCHIO, IL LOGOTIPO: LE DECLINAZIONI PolitecnicodiMilano MOX-ModelingandScientificComputing DipartimentodiMatematica DoctoralProgramin MathematicalModelsandMethodsforEngineering-XXVIIICycle COmpRessed SolvING: Sparse Approximation of PDEs based on Compressed Sensing Candidate: SimoneBrugiapaglia AdvisorandTutor: Prof. SimonaPerotto Co-advisor: Prof. StefanoMicheletti TheChairoftheDoctoralProgram: Prof. RobertoLucchetti Academic Year 2015-16 Abstract In this thesis, we deal with a new framework for the numerical approximation ff ofpartialdi erentialequationswhichemploysmainideasandtoolsfromcom- pressedsensinginaPetrov-Galerkinsetting. Thegoalistocomputeans-sparse approximationwithrespecttoatrialbasisofdimensionN (withs(cid:28)N)bypick- ing m(cid:28)N randomly chosen test functions, and to employ sparse optimization techniques to solve the resulting m×N underdetermined linear system. This approach has been named COmpRessedSolvING (in short, CORSING). First, we carry out an extensive numerical assessment of CORSING on ad- ff vection-di usion-reactionequations,bothinaone-andatwo-dimensionalset- ting, showing that the proposed strategy is able to reduce the computational burden associated with a standard Petrov-Galerkin formulation. Successively, we focus on the theoretical analysis of the method. In partic- ular, we prove recovery error estimates both in expectation and in probability, comparingtheerrorassociatedwiththeCORSINGsolutionwiththebests-term approximation error. With this aim, we propose a new theoretical framework based on a variant of the classical inf-sup property for sparse vectors, that is named Restricted Inf-Sup Property, and on the concept of local a-coherence, thatgeneralizesthenotionoflocalcoherencetobilinearformsinHilbertspaces. The recovery results and the corresponding hypotheses are then theoretically ff assessed on one-dimensional advection-di usion-reaction problems, while in the two-dimensional setting the verification is carried out through numerical tests. Finally, a preliminary application of CORSING to three-dimensional advec- ff tion-di usion-reaction equations and to the two-dimensional Stokes problem is also provided. Keywords: partialdifferentialequations,compressedsensing,Petrov-Galerkin formulation, inf-sup property, local coherence, estimates in expectation and probability. 1 Sommario Inquestatesivienepropostounnuovometodoperl’approssimazionenumerica ff di equazioni di erenziali alle derivate parziali, basato sull’applicazione di tec- niche e idee del compressed sensing a discretizzazioni di tipo Petrov-Galerkin. L’obiettivo è quello di calcolare una approssimazione s-sparsa rispetto ad una base trial di dimensione N (con s (cid:28) N), selezionando m (cid:28) N funzioni te- st in maniera randomizzata e, successivamente, risolvere il sistema sottode- terminato ottenuto, di dimensione m×N, tramite tecniche di ottimizzazione sparsa. Questo approccio è stato denominato COmpRessed SolvING (in breve, CORSING). Inprimis,vienecondottaunavastaindaginenumericadelCORSINGsuequa- ff zioniditipodi usione-trasporto-reazionemonodimensionaliebidimensionali, mostrandocomelastrategiapropostasiacapacediridurreilcostocomputazio- nale associato a discretizzazioni di Petrov-Galerkin standard. Successivamente,ilmetodovienestudiatodalpuntodivistateorico. Inpar- ticolare, si dimostrano delle stime di errore in valore atteso e in probabilità, mettendoaconfrontol’erroredellasoluzioneCORSINGel’erroredimigliorap- prossimazione s-sparsa. L’analisi teorica è basata su una variante della classica proprietàdiinf-suppervettorisparsi,denominataproprietàdiinf-supristretta, esulconcettodia-coerenzalocale,chegeneralizzalanozionedicoerenzalocale al caso di forme bilineari su spazi di Hilbert. I risultati teorici e le corrispetti- ff ve ipotesi vengono poi specializzati al caso di equazioni di di usione-traporto- reazionemonodimensionali,mentrenelcasobidimensionaleleipotesivengono verificate numericamente. Infine, risultati preliminari mostrano come il CORSING possa essere appli- ff cato al caso di equazioni di di usione-trasporto-reazione tridimensionali e al problema di Stokes bidimensionale. Parole chiave: equazioni differenziali alle derivate parziali, compressed sen- sing,formulazionediPetrov-Galerkin,proprietàdiinf-sup,coerenzalocale,sti- meinvaloreattesoeinprobabilità. 3 Contents Introduction 9 The COmpRessedSolvING approach . . . . . . . . . . . . . . . . . . . 9 Comparison with existing techniques . . . . . . . . . . . . . . . . . . . 10 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1 Compressedsensing 15 1.1 Three main concepts . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.1.1 Sparsity: what does it mean, exactly? . . . . . . . . . . . . 16 1.1.2 Sensing: the “big soup” . . . . . . . . . . . . . . . . . . . . 18 1.1.3 Recovery: looking for a needle in a haystack . . . . . . . . 20 1.2 Theoretical tastes . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.1 The Restricted Isometry Property . . . . . . . . . . . . . . 21 1.2.2 The importance of being incoherent . . . . . . . . . . . . 23 1.2.3 Orthogonal Matching Pursuit: “greed is good” . . . . . . 25 1.2.4 Bounded Orthonormal Systems . . . . . . . . . . . . . . . 28 1.2.5 Sampling strategies based on the local coherence . . . . . 35 1.2.6 A guiding example: Haar vs Fourier . . . . . . . . . . . . 36 1.2.7 RIP for generic matrices . . . . . . . . . . . . . . . . . . . 38 2 CORSING:Towardsatheoreticalunderstanding 43 2.1 The Petrov-Galerkin method . . . . . . . . . . . . . . . . . . . . . 43 2.1.1 Weak problems in Hilbert spaces . . . . . . . . . . . . . . 43 2.1.2 From weak problems to linear systems . . . . . . . . . . . 45 2.2 CORSING: COmpRessedSolvING . . . . . . . . . . . . . . . . . . . 48 2.2.1 Description of the methodology . . . . . . . . . . . . . . . 48 ff 2.2.2 Assembling the sti ness matrix . . . . . . . . . . . . . . . 50 2.3 CORSING in action . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.3.1 The 1D Poisson problem . . . . . . . . . . . . . . . . . . . 54 ff 2.3.2 A 1D advection-di usion problem . . . . . . . . . . . . . 77 2.4 Extension to the 2D case . . . . . . . . . . . . . . . . . . . . . . . 79 2.4.1 The model 2D Poisson problem . . . . . . . . . . . . . . . 82 2.4.2 A 2D advection-dominated example . . . . . . . . . . . . 85 5 6 CONTENTS 2.4.3 CORSING performance . . . . . . . . . . . . . . . . . . . . 87 2.4.4 Analysis of cost reduction with respect to the full-PG ap- proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3 AtheoreticalstudyofCORSING 93 3.1 Formalizing the CORSING procedure . . . . . . . . . . . . . . . . 94 3.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.1.2 Main hypotheses . . . . . . . . . . . . . . . . . . . . . . . 95 3.1.3 The CORSING procedure . . . . . . . . . . . . . . . . . . . 96 3.2 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 99 3.2.2 Non-uniform restricted inf-sup property . . . . . . . . . . 100 3.2.3 Uniform restricted inf-sup property . . . . . . . . . . . . 106 3.2.4 Recovery error analysis under the RISP . . . . . . . . . . . 108 3.2.5 Restricted Isometry Property . . . . . . . . . . . . . . . . 115 3.2.6 Recovery error analysis under the RIP . . . . . . . . . . . 116 3.2.7 Avoiding repetitions during the test selection . . . . . . . 118 ff 3.3 Application to advection-di usion-reaction equations . . . . . . 120 3.3.1 The 1D Poisson equation (HS). . . . . . . . . . . . . . . . 121 3.3.2 The 1D ADR equation (HS) . . . . . . . . . . . . . . . . . 124 3.3.3 The 1D Poisson equation (SH) . . . . . . . . . . . . . . . . 125 3.3.4 The 1D ADR equation (SH) . . . . . . . . . . . . . . . . . 127 3.3.5 The 1D diffusion equation (HS) . . . . . . . . . . . . . . . 127 3.3.6 The 2D Poisson equation (PS) . . . . . . . . . . . . . . . . 133 3.4 Further numerical experiments . . . . . . . . . . . . . . . . . . . 134 3.4.1 Sensitivity analysis of the RISP constant . . . . . . . . . . 134 3.4.2 CORSING validation . . . . . . . . . . . . . . . . . . . . . . 135 3.4.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . 138 3.4.4 Sensitivity analysis with respect to the Péclet number . . 139 4 FurtherapplicationsofCORSING 143 4.1 The Stokes problem . . . . . . . . . . . . . . . . . . . . . . . . . . 143 4.1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . 144 4.1.2 Petrov-Galerkin discretization . . . . . . . . . . . . . . . . 146 4.1.3 Numerical assessment of full-PG . . . . . . . . . . . . . . . 147 4.1.4 Numerical assessment of CORSING SP . . . . . . . . . . . 149 4.2 Multi-dimensional ADR problems . . . . . . . . . . . . . . . . . . 150 4.2.1 Tensorization . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.2.2 The QS trial and test combination . . . . . . . . . . . . . 153 4.2.3 Local a-coherence upper bound and tensorized random- ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.2.4 Well posedness of full-PG QS for the 2D Poisson problem 158 CONTENTS 7 4.2.5 Numerical results for the 2D case . . . . . . . . . . . . . . 164 4.2.6 Numerical results for the 3D case . . . . . . . . . . . . . . 165 Conclusions 169 Futuredevelopments 171 Acknowledgements 173 Listofacronyms 175 Bibliography 185
Description: