ebook img

Comprehensive routing strategy on multilayer networks PDF

0.45 MB·
by  Lei Gao
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comprehensive routing strategy on multilayer networks

Comprehensive routing strategy onmultilayernetworks Lei Gao,1,2 Panpan Shu,3 Ming Tang∗,1,2,4 Wei Wang†,1,2 and Hui Gao1,2 1WebSciencesCenter,UniversityofElectronicScienceandTechnologyofChina, Chengdu610054, China 2Bigdataresearchcenter,UniversityofElectronicScienceandTechnologyofChina,Chengdu610054, China 3School of Sciences, Xi’an University of Technology, Xi’an 710054, China 4School ofInformationScienceTechnology, EastChinaNormalUniversity, Shanghai 200241, China (Dated:January20,2017) Designing an efficient routing strategy is of great importance to alleviate traffic congestion in multilayer networks. In thiswork, we design an effective routing strategy for multilayer networks by comprehensively 7 consideringtherolesofnodes’localstructuresinmicro-level,aswellasthemacro-leveldifferencesintrans- 1 missionspeedsbetweendifferentlayers.Bothnumericalandanalyticalresultsindicatethatourproposedrouting 0 strategycanreasonablyredistributethetrafficloadofthelowspeedlayertothehighspeedlayer,andthusthe 2 trafficcapacityofmultilayernetworksaresignificantlyenhancedcomparedwiththemonolayerlowspeednet- n works.Thereisanoptimalcombinationofmacro-andmicro-levelcontrolparametersatwhichcanremarkably a alleviatethecongestionandthusmaximizethetrafficcapacityforagivenmultilayernetwork. Moreover, we J findthatincreasingthesizeandtheaveragedegreeofthehighspeedlayercanenhancethetrafficcapacityof 9 multilayernetworksmoreeffectively.Wefinallyverifythatreal-worldnetworktopologydoesnotinvalidatethe 1 results.Thetheoreticalpredictionsagreewellwiththenumericalsimulations. ] h PACSnumbers:89.75.Hc,89.75.Fb,89.40.-a p - c Alleviating the congestion in transportation and com- andreal-worldnetworks. Ourresearchmaystimulatefu- o munication systems is vital to modern society. For the turestudiesondesigningrealistictransportationandcom- s purpose of redistributing the traffic load in a low speed municationmultilayernetworks. . s transportation system such as bus net, we can establish c i ahighspeedsystem(e.g.,subwaynetwork)inthebusyre- s gionsorbetweenthestationswithhightrafficflow,andthe y I. INTRODUCTION two systems make up a new multilayer system (i.e., mul- h p tilayernetwork). Recentyears,someinvestigationsabout Manysystemsinmodernsocietycanbedescribedbycom- [ trafficcongestiononmultilayernetworkswereperformed, plex networks, such as power grids, transportation networks which mainly focusedonthe differentrolesoflayersin a 1 and social networks [1–5]. Routing on such networked sys- macroscopiclevel(e.g., different transmission speeds), or v tems to enhance traffic capacity is a significant issue, and 7 the local structures of nodes within the same layer in a hasbeenwidelystudiedfromtheperspectiveofcomplexnet- 0 microscopiclevel,withouttakingthemintoconsideration work frameworkoverthe past decades[6–11]. Moststudies 3 comprehensively. To this end, we propose a comprehen- 5 siveroutingstrategyonmultilayernetworkscomposedof aboutroutingarefocusedonmonolayernetworks. Thestud- 0 ies have revealed that traffic congestion is highly related to a low and a high speed network. We introduce a macro- . the structures of networks [3, 12, 13]. Generally, there are 1 andamicro-levelparametertoadjusttherolesofnetwork threewidelyusedtechniquestoenhancethethroughputofthe 0 structuresplayedintheroutingstrategy. Ourstrategyre- 7 distributes the traffic load in low speed layer to the high whole network: (1) modification of network structures [14– 1 17], (2)optimizationoftrafficresourcesallocations[18–20], speed layer reasonably, and the traffic capacity of multi- : and (3) designingbetter routingstrategies[9, 21–27]. Com- v layer networks are thus remarkably enhanced compared i withthemonolayerlowspeednetworks. Foragivenmul- pare with the first two methods, proposing effective routing X strategies seems to be more practical and thus has attracted tilayer network, an optimal combination of macro- and r muchinterest. Amongnumerousdifferentkindsofproposed a micro-level parameters is found. Under these parame- routing strategies, an efficient routing strategy proposed by ters, the traffic capacity of the system reaches its maxi- Yan and his colleagues is widely acknowledged for its sim- mum value. Moreover, increasing the networks size and plicity and efficiency [21]. The strategy redistributes traffic theaveragedegreeofthehighspeedlayercanenhancethe loadincentralnodestoothernoncentralnodesandimproves trafficcapacityofmultilayernetworksmoreeffectively.To the network throughput significantly. Echenique et al. pro- quantificationallyunderstandtheproposedroutingstrat- posed a novel traffic awareness protocol (TAP) by consider- egy, we developed a theoretical approach and a remark- ing the waiting time of packets, in which a node forwardsa ableagreementwithnumericsisobservedinbothartificial packettoitsneighboringnodeaccordingtotheshortesteffec- tivedistance[28,29]. Somescholarsalsoproposedstrategies forsystemswithlimitedbandwidth[30,31]. ∗Correspondenceto:[email protected] Withtheavailabilityofbigdata,scholarsfoundthatmodern †Correspondenceto:[email protected] infrastructures are actually significantly interact with and/or depend on each other, which can be described as multilayer 2 (multiplex) networks [32–35]. For example, to redistribute II. MODEL thetrafficloadinalowspeedtransportationnetwork,wecan buildanewhighspeednetworkinthebusyregionsorbetween A. Networkmodel thehighflowstations, andthetwomonolayernetworkscon- stitute a multilayernetwork. Researchershavedemonstrated Themultilayernetworkconsiderediscomposedbytwolay- thatthedynamicsof[35]andon[36–39]multilayernetworks ers with N and N nodes respectively. Layer A represent aremarkedlydifferentfrommonolayernetworks. Untilvery A B the low speed network, and layer B is the high speed net- recently, some researchers studied the traffic dynamics on work. In general condition, the expense of building a high multilayer complex networks, i.e., how to alleviate the traf- speed network is far more than that of low speed network, ficcongestioninordertoenhancethemultilayernetworkca- thusthesizeofhighspeednetworkissmaller.Forexample,in pacity [40–45]. Interestingly, Sole´-Ribalta et al. [44] devel- therailway-airlinemultilayernetwork,wherethespeed(cost) opedastandardizedmodeloftransportationinmultilayernet- of the airline network is faster (more) than that of the rail- works, and showed that the structure of multiplex networks waynetwork. Thus,thesizeoftheairlinenetworkissmaller caninducecongestiononaccountoftheunbalanceofshortest than the railway network, and all airline stations are located pathsbetweenlayers.MorrisandBarthe´lemy[40]analyzeda atpointswhichcanbeconsideredasnodesintherailwaynet- multilayernetworkconsistsoftwolayers,andshowedthatit work,butnoviceversa[47]. Forsimplicity,we assume that ispossibletoobtainanoptimalcommunicationmultiplexby thenodesinthehighspeedlayerBarearandomsubsetofthe balancingtheeffectsbetweendecreasingtheaveragedistance low speed layer A [40]. We use the uncorrelated configura- andcongestiononaverysmallsubsetofedges. tionmodel(UCM)[48]togeneratethelowspeedlayerA,and Thestructuresofmultilayernetworksbringnewchallenges usetheErdo¨-Re´nyi(ER) networks[49] torepresentthe high when we proposeeffectiveroutingstrategies, and the task is speed layer B. The multilayer network is generated as fol- markedlydifferentfrom monolayernetworks. On one hand, lows: (1)BuildlayerAusingtheUCM methodwith power- multilayer networks can relieve the traffic congestion of the lawdegreedistributionsP(k) k−γ, whereγ is thedegree ∼ low speedlayerbyusingthe highspeed layer,howevercon- exponent.WesetthesizeoflayerAasNA,theminimumde- gestion may be induced in the high speed layer [46]. Al- greeiskmin = 2,andthemaximumdegreeiskmax √NA. ∼ though establishing high speed transportation networks can (2)RandomlyselectNB (NB 6 NA) nodesin layerA, and improvethetrafficcapacityoflowspeednetwork,howtorea- match these nodes one-to-one. This means that each pair of sonablytheredistributetrafficloadsisanessentialissue. On thetwomatchednodesvAo andvBo areactuallythesamenode theotherhand,whendesigningeffectiveroutingstrategieswe butin two differenttransportmanners. Both of them can be should (1) take the intra-layer structures into considerations denotedasacouplednodevo. Orsay,acouplednodevo has from microscopic perspective, and (2) consider the efficien- tworeplicanodesinlayersAandB,whicharedenotedbyvAo cies of different layers from a macroscopic view. Previous and vBo respectively. (3) Constructa ER networkas the sec- investigationsabouttrafficcongestiononmultilayernetworks ondlayerB byusingtheselectedNB nodesinstep (2),i.e., mainlyfocusedon themacroscopicdifferencesbetweenlay- eachpairoftheserandomlyselectednodesareconnectedwith ers[40],orthelocalstructureofnodeswithinthesamelayer a probabilityp. Accordingto the abovethree steps, a multi- inamicroscopiclevel[43],withouttakingbothoftheminto layer network can be built. Note that every node in layer B considerationcomprehensively. In this work, we proposean hasitscounterpartnodeinlayerA,buttheinverseisnottrue. comprehensiveroutingstrategyonmultilayernetworksbyin- Wedenotethedegreedistributionofthemultilayernetworkas corporatingthemacroscopicdifferenceofspeedbetweenlay- P(−→K)=P(k ,k ),wherek andk denotethedegreesin A B A B ersandmicroscopicdistinctionsamongdifferentnodesinthe layerAandB respectively.Foranodev inlayerAwithout A samelayer. Wefindthatourroutingstrategycanredistribute counterpartinlayerB,wehavek =0.Anillustrationofthe B thetrafficloadinlowspeedlayertohighspeedlayerreason- multilayernetworkisshowninFig.1(a). ably, and the traffic capacity of multilayer networks are re- markablyenhancedcomparedwiththe monolayerlowspeed networks. Foragivenmultilayernetwork,thereisanoptimal B. Routingmodel combinationofmacro-levelparameterandmicro-levelparam- eterthatmaximizethetrafficcapacity.Increasingthesizeand averagedegree of the high speed layer can enhancethe traf- Inourmodel,weassumeallnodesinlayerAaretreatedas ficcapacityofmultilayernetworksmoreeffectively.Numeri- bothhostsand routersforgeneratinganddeliveringpackets, calresultsonartificialmultilayernetworksaswellasthereal while the nodesin layer B can onlydeliver packets. We as- Work-Facebookmultilayernetworkagreewellwithouranal- sumethatacouplednodevo candeliverpacketsbetweenlay- ysis. erswithinfinitybandwidthandnotimeconsumptionthrough tworeplicanodesvo andvo. Forsimplicity,eachnodeinthe A B Theoutlineofthepaperisasfollows. InSec. II,wegivea layerA(B)hasthesamemaximumpacketdeliveryabilityC A detaileddescriptionofourroutingstrategyonmultilayernet- (C ). That’stosay,ateachtimestepeachnodev candeliv- B A works.InSec. III,wesuggesttheoreticalanalysis. InSec. IV, eryC packetstoitsneighborsinlayerAifithasnocounter- A wepresentoursimulationresults. SectionVsummarizesour partin layerB. Otherwise, its counterpartnodev canalso B resultsandconclusions. transmitC packetsinlayerB. WesetC = C = C = 1 B A B 3 headofit’squeueanddeliverthepackettothenextstop A A in layer A (B). So a couplednodevo at mostprocess s i j t s i j t 2 packets per time step through two replica nodes vAo Origin Destination and vBo in layers A and B. For a non-coupled node v (i.e.,nodev hasnocounterpartinlayerB),itcan A A processonlyC = 1packet. Whenapacketarrivesat A B B itsdestination,itisremovedfromthesystem;otherwise itisqueued. i j t i j t (a) T=0 (b) T=1 C. Comprehensivemultilayerroutingstrategy A A s i j t s i j t By integrating different roles of nodes in micro-level, as wellasdifferenttransmissionspeedoflayersinmacro-level, weproposeacomprehensivemultilayerrouting(CMR)strat- egy, which can remarkably enhance the traffic capacity of B B multilayer networks. We denote that a path between nodes sandtas i j t i j t p(s t):=s v0,v1, ,vl , ,vd−1,vd t, (1) (c) T=2 (d) T=3 → ≡ F F ··· F ··· F F ≡ where vl is the l-st stop and node vl belongsto layer F F F ∈ FIG. 1: An illustration of multilayer network where the nodes of A,B ,anddisthenumberofstopsinthispath. Similarto { } layerBformasubsetofthenodesofnetworkA. EdgesoflayerA Ref.[21], wedenotean‘efficientpath’foranypathbetween areshowninorange,edgesofnetworkBareshowninred,andnodes nodessandtas incommontobothlayersareconsideredtobecouplednodes(shown bydashedlines).Highlightedingreen,apathbetweenthe‘origin’s n−1 andthe‘destination’tisrepresented,andthearrowsshowapacket L(p(s→t),αF,βF)= XαF[k(vFl )]βF. (2) deliveryprocessonthepathwithoutcongestion. Couplednodescan l=0 deliver packets between layers with no time consumption. (a) At T = 0, a packet is generated with the randomly chosen‘origin’ s where k(vl ) is the degree of node vl in layer F. The effi- F F and‘destination’tinlayerA,andapath(highlightedingreen)from cientpathbetweens andt is correspondingto the route that nodestotischosenaccordingtothepre-givenroutingstrategy. (b) makesthe sum L(p(s t),α ,β ) minimum. If there are F F T = 1,‘origin’sdeliversthepackettothenextstopithroughthe severalefficientpathsb→etweentwonodes,wechooseoneran- edge(s,i)inlayerA. (c)T = 2,nodeideliversthepacket tothe domly. The efficient path is related to the macro-parameter next stop j through the edge (i,j) in layer B. (d) T = 3, node α andmicro-parameterβ . Themacro-parameterα 0 j deliversthepacket toits‘destination’ tthroughtheedge(j,t)in F F F ≥ controls packet transmission speed in layer F, and reflects layerB,andthepacketisremovedfromthesystem. the macro-level transmission speed difference between lay- ers. Thesmallervalueofα ,thefastertransmissioninlayer F F. Theparameterα (α )correspondstotheslower(faster) inthispaperforsimplicity. A B networkandtheratioα /α controlstherelativetimespends Duetothefinitedeliveryabilityofnodes,aqueueofbuffers B A each jump in layer B compared with layer A. The micro- isneededforeachnodeto accommodatepacketswaitingfor parameter β determines the tendency of packets’ favour to beingdelivered.Thetransportprocessesisasfollows: F small-degreeorlarge-degreenodesinlayerF,andreflectsthe 1. Packet generation. At each time step, R number of micro-leveldifferencebetweennodesinthesamelayer.Large packetsaregeneratedwithrandomlychosenoriginsand degree(smalldegree)nodesinlayerF arepreferentiallytobe destinations in layer A. For each packet, a path from thenextstopwhenβF < 0(βF > 0). WhenβF = 0,nodes thesourcetothedestinationischosenaccordingtothe withdifferentdegreeshavethesameprobabilitytobethenext comprehensivemultilayerroutingstrategy(tobeintro- stop. Fig.1illustratestheroutingonmultilayernetworks. ducedinthenextsubsection). Ifthereareseveralpaths between these two nodes, we choose one randomly. Each newly created packet is placed at the end of the III. THEORETICALANALYSIS queueofitssourcenodev if thenextstop isinlayer A A,orqueuedatthecounterpartnodevo ifthenextstop Fromtheperspectiveofstatisticalphysics,weusetheorder B isinlayerB. parameterH(R)tocharacterizethecongestiononmultilayer networks[21], 2. Packet processing. The first-in-first-out(FIFO) rule is adopted to hand each queue. At each time step, node C ∆W v (v )canprocessC =1(C =1)packetfromthe H(R)= lim h i, (3) A B A B t→∞R ∆t 4 where∆W =W(t+∆t) W(t), isaveragevalueover IV. RESULTS − h···i ∆t, andW(t) is the totalnumberof accumulatedpacketsin thesystemattimet. FromthevaryingofH withR,wewill We introduce four parameters to investigate the effective- knowthecriticalpointRc(tobecomputedlater)abovewhich ness of CMR strategy. First, we introducea generalizedpa- the congestion occurs. For a small value of R, the number rametercouplingbasedonRef.[40],whichisusedtodescribe of generated and delivered packets are balanced, i.e., every howwelltwolayersareusedtotransmitthepackets.Herethe packetcanbetransportedtotheirdestinations,thusH(R) = couplingisdefinedas 0.ForalargevalueofR(i.e.,R>R ),thecongestionoccurs c σst(α ,β ) and the numberof accumulatedpackets increaseswith time, P B F F s6=t so H(R) > 0. The critical traffic capacity R is the most λ= , (7) c σst(α ,β ) significantparameter of a transportationnetwork, which can P F F s6=t beusedtoevaluatetheperformanceofaroutingstrategy,i.e., thelarger,thebetter. where σst(αF,βF) is the numberof efficient paths between TocomputethevalueofRc,wefirstdefinetheefficientbe- nodessandtforgivenvaluesofαF andβF,andσBst(αF,βF) tweennesscentralities(EBC)ofnodesinmultilayernetworks isthenumberofefficientpathsthatcontainsatleastoneedge as in layer B. Specifically, we have σBst(αF,βF) = 0 when everyefficientpathbetweennodessandtonlyusestheedges σst(α ,β ,v) inlayerA. Forthecaseofλ 0,mostpacketsaretransported g(αF,βF,v)=X σst(αF ,βF ) , (4) onlybylayerA,withoutusin≈gtheedgesinlayerB. Withthe s6=t F F increaseofλ,morepacketsaretransportedbyusingtheedges inB. where σst(α ,β ) is the number of efficient paths be- F F Secondly,wedefineδas tween nodes s and t for given values of α and β , and F F σst(αF,βF,v) is the number of efficient paths that pass PesBt(αF,βF) node v. The larger value of g(αF,βF,v), the more effi- δ = s6=t , (8) cient paths that pass node v. As a result, node v needs to PesAt(αF,βF) processmore packetsand hasa largerprobabilityto be con- s6=t gested. We denote nodes with high values of EBC as high- whereest(α ,β )[est(α ,β )]isthenumberofedgesbe- A F F B F F load (HL) nodes, and similarly denote nodes with low val- longingtolayerA(B)intheefficientpathsbetweennodess ues of EBC as low-load (LL) nodes. A coupled node vo andtforgivenvaluesofα andβ . Whenδ 0,mostedges F F ≈ can deliver the packets to its neighbors in both layers A thatareusedtodeliverpacketsbelongtolayerA. Themore and B, and it has two values of EBCs g(αF,βF,vAo) and edgesinlayerBareusedtotransportpackets,thelargervalue g(αF,βF,vBo),wherevAo (vBo)representsnodevo inlayerA of δ. The definitions of λ and δ look similar, the difference (B). If node vo or vo overload, traffic congestion will oc- isthatcouplingλrepresenttheproportionofalltheefficient A B cur at node vo. Thus, node vo’s EBC in the system is the pathsinsystemthatcontainedgesinlayerB,whileδ isthat, maximum value of g(αF,βF,vAo) and g(αF,βF,vBo), i.e., inallefficientpaths,theratioofedgesinBandA. g(α ,β ,vo) = max g(α ,β ,vo),g(α ,β ,vo) . For Thirdly, we define the average length of efficient paths to F F { F F A F F B } a non-coupled node v (i.e., node v has no counterpart in capturetheeffectivenessoftheCMRstrategyas A A layerB),itcanonlydeliverthepacketstoneighborsinlayer 1 A,anditsEBCcanbeexpressedasg(αF,βF,vA). d = Xdst(αF,βF), (9) h i N (N 1) At every time step, the system will generate R packets in A A− s6=t layer A. We can get the average number of packets that a where dst(α ,β ) is the length or jumps of efficient paths nodevneedstoprocessas F F between node s and t for given values of α and β . For F F example,thelengthofselectedpathbetweennodessandtin g(α ,β ,v) Θ =R F F . (5) Fig.1is3. Thesmallerof d , thelessaveragejumpsofthe h Fi N (N 1) h i A A packetsarrivethedestination. − Toimprovenetworktrafficcapacity,theaveragepacketde- WhenR R ,thereisnoaccumulatedpacketsatanynodein ≤ c liverytime T mustbeminimized.Thedefinitionof T is thesystem,i.e., ΘF C. WhenR>Rc,trafficcongestion h i h i willoccuratsomheHiL≤nodes,i.e., ΘF >C. Sincethenode 1 n with the largest EBC value has thhe larigest probability being T = lim XTp, (10) h i t→∞n congested, and combining the condition C = 1, the critical p=1 packetgeneratingnumberRc shouldfulfill wherenisthenumberofarrivedpacketsatagiventimeand T isthepacketdeliverytimeofpacketp. Thedeliverytime p R = NA(NA−1), (6) ofeachpacketconsistsofthetravellingtimefromtheorigin c gmax(αF,βF) to the destination and the waiting time in the queue of the congestednodes. WhenRislessthanR , T onlydepends c h i wheregmax(αF,βF)isthelargestvalueofEBCinthesystem on the travelling time which is relatively small, while when forthegivenα andβ . R>R , T increaseswithRrapidly. F F c h i 5 A. Artificialmultilayernetworks of Rc. To understandthe non-monotonousphenomenon,we need to check what happenswhen varyingβ . When β is B B small(large),thevaluesofλandδarelarge(small)asshown In this subsection, we perform extensive numerical sim- in Figs. 3(a) and (b). This indicates that packets are more ulations on artificial multilayer networks. We set the size likely to be transmitted in layer B (A). For a smallvalue of of layer A as N = 1000, degree exponents γ = 3.0, A β , manycouplednodesareusedtotransmitpackets. Simi- the minimum degree kmin = 2, and the maximum degree B lartotheeffectivestrategyonmonolayernetworks,preferen- kmax √NA. ThesizeoflayerB isNB =500andaverage ∼ tially transmittingthe packetsthroughsmall degreenodesin degree k = 6. All the results are obtained by averaging B h i layerB couldimprovethetrafficcapacityofthesystem[21], over20 differentnetworkrealizations, with 100independent andR thusfirstincreaseswithβ . Foralargevalueofβ , runsoneachrealization. c B B mostpacketsaretransmittedonlayerA,whichdecreasesthe usage of coupled nodes in transmitting the packets, and Rc 0.10 (a) 80 (c) 30 thusdecreases. InFig.2(d),wefurtherverifyinwhichlayer B=0.1 R c20 thecongestionoccursfordifferentvaluesofβB. Tothisend, 0H.05 BB==00..47 R c60 10 0 1 A 2 wwehesnetwtheechdeeclikvetrhyeaubpiplietyrloimfnitocdaepsaicnitlyayoefrlAaye(Br B)is(Ain)fi,ni.iet.e, BB==11..03 40 Boo( B)=0.7 asinmaluylsaitsion CanAd g→(α∞,βand,vgo()α=F,βgF(α,vo,)β=,vgo()α]F. ,WβFe,fivnBod)th[CatBco→nge∞s- Rc( B)=79 F F F F A 0.00 20 tionoccursinlayerB(A)forsmall(large)valuesofβ ,since 20 40 60 80 100 120 0 1 2 3 4 5 B 60 layerB (A)hasasmallercriticalnetworkthroughput. From (b) (d) CB simulation 120 CB analysis what we discussed above, we can see that compared to the T 40 BB==00..14 Rc80 CCAA sainmaluylsaitsion inseotlwatoerdklioswremspaerekdabnleytwimoprkroAve,dthaetscoampaecpiatyraRmcetoefrsm,suilntcileaytheer B=0.7 trafficloadofthelowspeedlayerAisredistributedtothehigh 20 BB==11..03 40 speed layer B reasonably. The system capacity is affected by both layersA and B, and dependsnon-monotonicallyon 20 40 60 80 100 120 0 1 2 3 4 5 micro-parameter β . The theoretical predictions agree well R B B withthenumericalsimulationsinbothFigs.2(c)and(d). FIG.2: TheefficiencyofCMRstrategyonartificialmultilayernet- We further study the effects of network size N and av- works when αB = 0.5. (a) The order parameter H and (b) the B eragedegree k of layer B (i.e., increasingthe numberof average delivery time T of packets versus R. (c) The trafficca- B h i h i couplednodesand edgesin the high speed network)on sys- pacityRcofmultilayernetworksand(d)theupperlimitcapacityof layer B (A)asafunctionof theβB. Theinsetof (c)isthetraffic temcapacityinFig.4. AsshowninFigs.4(a)and(c),wefind capacity Rc of monolayer networks (layer A) as a function of βA thatthemaximumtrafficcapacityRco(αB)whenαB =0.5in- when αA = 1. The theoretical analysis results are obtained from creaseswith kB andNB,sincethenumberofefficientpaths h i Eq.(6).WesetotherparametersasNA =1000,γ =3.0,kmin=2, (coupled nodes) increase. That’s to say, increasing the size kmax √NA,NB =500, kB =6,αA =1,andβA =1. andaveragedegreeof the high speed layerenhancethe traf- ∼ h i fic capacity of multilayer networkseffectively. We note that Wefirstfocusontheeffectsofmicro-parameterβB onthe the optimal micro-parameter βBo(αB) decreases with hkBi effectivenessofCMRstrategyinFig.2. Sinceβ = 1isop- [seeFig.4(b)],butdoesnotchangewithNB [see Fig.4(d)]. A Again,ourtheoreticalpredictionsagreewellwiththenumer- timalvalue withoutlayerB for the case of α = 1 [see the A icalsimulations. insetofFig.2(c)],we setα = 1andβ = 1. Throughex- A A tensivenumericalsimulations,wefindthatothervaluesofα All results above are obtained when macro-parameter A andβ donotqualitativelyaffecttheeffectivenessofthepro- α =0.5,wenextstudytheeffectsofmacro-parameterα in A B B posedCMRstrategy.Wesetα /α <1(i.e.,α 1)here, Fig. 5. We find that Ro(α ) dependsnon-monotonicallyon whichindicatesthatajourneyoBnthAehighspeedlBay≤erBisfa- α [Ro(α ) first increcaseBwith α and then decrease], and B c B B voredforajourneyinlayerA.FromFigs.2(a)and(b),wefind the corresponding optimal micro-parameter βo(α ) mono- B B thatfordifferentvaluesofmicro-parameterβ ,boththeorder tonically decreases with α and reaches a suitable packets’ B B parameterH andaveragepacketdeliverytime T monoton- preference to layer B. For small (large) values of α , λ B h i icallyincreaseswithR. AbovethethresholdR , H and T and δ are large (small) as shown in the insets of Figs. 5(a) c h i are finite, andincrease with R. Importantly,we find thatR and (b) respectively. Importantly, we find that the system c exhibits a non-monotonously varying with β as shown in reachesamaximumtrafficcapacityR⋆ attheoptimalmacro- B c Fig. 2(c), and the system existsan optimalvalueβo(α ) = and micro-level parameters combination (α⋆,β⋆), and the B B B B 0.7 at which the traffic capacity R reaches the maximum number of delivered packets by each layer reach to a bal- c valueRo(α ) = 79whenα = 0.5. Theaveragelengthof ance. From Figs. 5(a) and (b), we obtain R⋆ = 79 at c B B c efficientpaths d reachestheminimumvalueatthesamepa- (α⋆,β⋆) = (0.5,0.7). Without the high speed network B, h i B B rameters[see Fig. 3(c)]. Specifically, R first increaseswith themaximumtrafficcapacityoflowspeednetworkis33[see c β , and peaks at βo(α ) = 0.7, and then decreases. The theinsetofFig.2(b)]. Themaximumtrafficcapacityofsys- B B B theoretical predictions agree well with the numerical values tem is improved about 2.5 times once the network B is in- 6 120 (a) 200 (c) 1.0 (a) 100 150 )B o R(c 80 100 analysis 50 analysis simulation simulation 0.5 60 0 0 10 20 30 200 400 600 800 1000 1.0 (b) analysis 1.2 (d) analysis simulation simulation 0.8 0.0 )B 0.8 0 1 2 3 4 5 o (B 0.6 0.4 0.4 3 (b) 0.2 0.0 0 10 20 30 200 400 600 800 1000 <kB> NB 2 FIG.4:CMRstrategyonartificialmultilayernetworkswithdifferent kB andNB. ThemaximumcapacityRco(αB)(top),andthecor- hrespiondingoptimalmicro-parameterβBo(αB)(bottom)asafunction 1 of kB [(a)and(b)]andNB [(c)and(d)]. Wesetotherparameters h i as NA = 1000, γ = 3.0, kmin = 2, kmax √NA, αA = 1, ∼ βA =1,αB =0.5,NB =500[(a)and(b)], kB =6[(c)and(d)]. h i 0 0 1 2 3 4 5 TABLEI:StructuralpropertiesofWorknetworkandFacebooknet- 8 work, including number of nodes N, number of edges E, mean degree k , maximum degree kmax, degree heterogeneity Hk = k2 / kh2i,diameterD,averageshortestdistanceL,correlationco- 7 ehfficiiehntir,clusteringcoefficientc,andmodularityQ. Network N E k kmax Hk D L r c Q h i d 6 Work 60 194 6.5 27 1.7 4 2.4 −0.218 0.64 0.46 Facebook 32 124 7.8 15 2.3 4 2.0 0.003 0.54 0.34 5 (c) fectiveness of our proposed CMR strategy on a real-world 4 multilayernetwork, which is a social network of Employees 0 1 2 3 4 5 ofComputerScienceDepartment(ECSD)atAarhusUniver- sity[50]. Themultilayersocialnetworkconsistsoffivekinds B ofonlineandofflinerelationships(Facebook,Leisure,Work, Co-authorship, Lunch), and we choose the Work and Face- FIG.3:Theparameters(a)couplingλ,(b)ratioofedgesthatusedin book relationshipsas layer A and layer B, respectively. We layersBandAδ,and(c)averagejumps d betweennodesVSβB h i denotethisreal-worldnetworkasWork-Facebookmultilayer onartificialmultilayernetworks. WesetotherparametersasNA = 1000, γ = 3.0,kmin = 2,kmax √NA,NB = 500, kB = 6, network. LayerAcomposesof60nodesand194edges,and αA =1,βA=1,andαB =0.5. ∼ h i layerB has32nodesand124edges. Somestructuralproper- tiesofthetwonetworksarepresentedinTableI. We study the effectiveness of the CMR strategy on the duced. Although establishing high speed transportation can Work-Facebook multilayer network in Fig. 6. Since the ex- improvethetrafficcapacityoflowspeednetwork,ourresults tremely complicated structures of networks, there has two indicatethatareasonableredistributionoftrafficloadisanes- peaks of R versus β , at which the traffic capacity is very c B sentialissue. The theoreticalpredictionsagreewell with the large,andtheRo(α )correspondstothesecondpeak. Com- c B numericalsimulations. paredtotheisolatedWorknetwork,thecapacityR ofWork- c Facebook multilayer network are improved when Facebook network joins in the system [see the inset of Fig. 6(a)], and B. Real-worldnetworks the system capacity is affected by both Work and Facebook networks[seeFig.6(b)]. InFig.7,wefindthatRo(α )ver- c B A wide range of systems in the real world have multi- sus α exhibits a nonmonotonicpattern [see Fig. 7(a)], and B ple subsystems and layers of connectivity, which can be de- the corresponding optimal micro-parameter βo(α ) mono- B B scribed as multilayer networks [32–35]. We verify the ef- tonicallydecreaseswithα [seeFig.7(b)]. Similartothear- B 7 80 14 8 (a) (a) 6c 12 R * * ) 75 B =0.5, B =0.7 4 B c ( 0.99 R 10 2 o 0 1 2 c R A 70 0.98 8 analytsis 0.0 0.5 1.0 1.5 2.0 B 6 simulation 65 0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 1.2 3 (b) 50 (b) 2 40 )0.8 B c 1 R 30 CB simulation o ( B 0 1 2 CB analysis B 20 CA simulation 0.4 analysis CA analysis 10 simulation 0 0.0 0.5 1.0 1.5 2.0 0 1 2 3 4 B B FIG.5:CMRstrategyonartificialmultilayernetworkswithdifferent FIG.6: CMR strategyonWork-Facebook multilayer networkwith αB. (a)Rco(αB)and(b)βBo(αB)asafunctionofαB. Theinsets αB = 0.5. (a)ThetrafficcapacityRc, and(b)theupper limitca- of (a) and (b) respectively exhibit λ and δ versus αB when βB = pacity of layer A (Work) and layer B (Facebook) as a function of βBo(αB).WesetotherparametersasNA =1000,γ =3.0,kmin = theβB. Theinsetof(a)isthetrafficcapacityRc ofisolatedWork 2,kmax √NA,NB =500, kB =6,αA =1,βA=1. networkasafunctionofβAwhenαA =1.WesetαA=1,βA =1, ∼ h i andαB =0.5. tificialnetworks,wefindthatthesystemreachesamaximum traffic capacity R⋆ = 15 at the optimal micro- and macro- c level parameters (α⋆,β⋆) = (2.1,0.7). The fluctuation of B B by considering different transmission speeds of layers from curvesinFigs.6and7iscausedbytheextremelycomplicated the macroscopicview (by adjusting a macro-parameterα ), structuresof both Work and Facebooknetworks. We should F and different roles of nodes from the perspective of micro- notethatthetheoreticalpredictionsmarkedlywellagreewith scopic structure (controlled by a adjustable micro-parameter thenumericalsimulations. β ). We thenperformedextensivenumericalsimulationson F both artificial and real-world networks. We found that our routingstrategy can redistributethe traffic loadin low speed V. DISCUSSIONS layer to high speed layer reasonably, and the traffic capac- ityofmultilayernetworkareremarkablyenhancedcompared Forthepurposeofalleviatingthecongestionofalowspeed withthemonolayerlow speednetwork. Inaddition,thesys- transportation network, an intuitive way is to built a new tem capacity is affected by both layers A and B, and de- high speed network in busy regions or among the high flow pendsnon-monotonicallyonmicro-parameterβ andmacro- B nodes. The low and high speed networks constitute a mul- parameter α . For a given multilayer network, the system B tilayer network. How to reasonable redistribution of traffic reachesamaximumtrafficcapacityR⋆ attheoptimalmicro- c load to maximize the multilayer network is an essential is- and macro-level parameters (α⋆,β⋆). Moreover, we found B B sue and full of challenges. In this work, we first proposed that increasing the size and the average degree of the high a comprehensivemultilayernetworkrouting(CMR) strategy speed layer B enhances the transport capacity of multilayer 8 networksmore effectively. The theoreticalpredictionsagree wellwiththenumericalsimulationsinbothartificialandreal- 15 (a) worldnetworks. 14 ) B 13 ( o c R 12 Awisewaytoalleviatetrafficcongestionformultilayernet- analysis worksisdesigningeffectivemultilayernetworkroutingstrat- simulation egy. Our results exhibit a way to reasonable redistribute the 11 traffic load. In this work, we proposed an effective strategy whichconsidersthelocalstructuresofdifferentnodes,aswell 0 1 2 3 as the transmission speeds of differentlayers. We study our proposedstrategy on multilayernetworksincludingtwo lay- 2.5 ers,anditcanremarkablyimprovethesystems’trafficcapac- analysis ity.Ourresearchmaystimulatefuturestudiesondesigningre- simulation alistictransportationandcommunicationmultilayernetworks, 2.0 suchas,consideringdifferentdeliveryabilitiesofnodes,lim- ) B ited traffic resources, transmission cost of layers, and multi- 1.5 layernetworkswithmorethantwolayers. ( o Acknowledgments B 1.0 0.5 (b) 0 1 2 3 B FIG.7: CMRstrategyonWork-Facebook multilayer networkwith Thiswork was supportedby the NationalNaturalScience differentαB. (a)ThemaximumcapacityRco(αB)foragivenαB, Foundationof China (GrantNos. 11575041and 61673086), and (b) the corresponding optimal micro-parameter βBo(αB) as a andtheFundamentalResearchFundsfortheCentralUniver- functionofmacro-parameterαB.WesetαA=1,βA =1. sities(GrantNo. ZYGX2015J153). [1] S.H.Strogatz,Nature410,268(2001). [12] R.Guimera,A.Arenas,A.D´ıaz-Guilera,andF.Giralt,Physical [2] R.AlbertandA.-L.Baraba´si, Reviewsofmodernphysics74, ReviewE66,026704(2002). 47(2002). [13] R. Guimera`, A. D´ıaz-Guilera, F. Vega-Redondo, A. Cabrales, [3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. andA.Arenas,PhysicalReviewLetters89,248701(2002). Hwang,Physicsreports424,175(2006). [14] B.Danila,Y.Yu,J.A.Marsh,andK.E.Bassler,PhysicalRe- [4] M. Newman, Networks: an introduction (Oxford university viewE74,046106(2006). press,2010). [15] B.Danila,Y.Yu,J.A.Marsh,andK.E.Bassler,Chaos:AnIn- [5] A.-L.Baraba´si,Networkscience(CambridgeUniversityPress, terdisciplinaryJournalofNonlinearScience17,026102(2007). 2016). [16] Z.Liu,M.-B.Hu,R.Jiang,W.-X.Wang,andQ.-S.Wu,Physi- [6] A.Arenas,A.D´ıaz-Guilera,andR.Guimera,PhysicalReview calReviewE76,037101(2007). Letters86,3196(2001). [17] G.-Q. Zhang, D. Wang, and G.-J. Li, Physical Review E 76, [7] L.Zhao,Y.-C.Lai,K.Park,andN.Ye,PhysicalReviewE71, 017101(2007). 026125(2005). [18] Y. Xia and D. Hill, EPL (Europhysics Letters) 89, 58004 [8] Z.Wu,L.A.Braunstein,S.Havlin,andH.E.Stanley,Physical (2010). reviewletters96,148702(2006). [19] L.Xiang,H.Mao-Bin,L.Jian-Cheng,D.Jian-Xun,andS.Qin, [9] D.DeMartino,L.DallAsta,G.Bianconi,andM.Marsili,Phys- ChinesePhysicsB22,018904(2013). icalReviewE79,015101(2009). [20] G.-Q. Zhang, S. Zhou, D. Wang, G. Yan, and G.-Q. Zhang, [10] M.Barthe´lemy,PhysicsReports499,1(2011). PhysicaA:StatisticalMechanicsanditsApplications390,387 [11] J.Wu,K.T.Chi,F.C.Lau,andI.W.Ho,IEEETransactionson (2011). CircuitsandSystemsI:RegularPapers60,3303(2013). [21] G. Yan, T. Zhou, B. Hu, Z.-Q.Fu, and B.-H.Wang, Physical 9 ReviewE73,046108(2006). S.Havlin,Nature464,1025(2010). [22] M.Tang,Z.Liu,X.Liang,andP.Hui,PhysicalReviewE80, [37] W. Wang, M. Tang, H. Yang, Y. Do, Y.-C. Lai, and G. Lee, 026114(2009). Scientificreports4,5097(2014). [23] B.Tadic´andM.Mitrovic´,TheEuropeanPhysicalJournalB71, [38] J.Go´mez-Gardenes, I.Reinares,A.Arenas, andL.M.Flor´ıa, 631(2009). Scientificreports2,620(2012). [24] X.Ling,M.-B.Hu,R.Jiang,andQ.-S.Wu,PhysicalReviewE [39] J. Aguirre, R. Sevilla-Escoboza, R. Gutie´rrez, D. Papo, and 81,016113(2010). J.Buldu´,Physicalreviewletters112,248701(2014). [25] M.TangandT.Zhou,PhysicalreviewE84,026116(2011). [40] R.G.Morrisand M.Barthelemy, Physicalreview letters109, [26] A. Rachadi, M. Jedra, and N. Zahid, Chaos: An Interdisci- 128703(2012). plinaryJournalofNonlinearScience23,013114(2013). [41] J.Zhou,G.Yan,andC.-H.Lai,EPL(EurophysicsLetters)102, [27] Y.Gan,M.Tang,andH.Yang,TheEuropeanPhysicalJournal 28002(2013). B86,1(2013). [42] O.Yagan,D.Qian,J.Zhang,andD.Cochran,IEEEJournalon [28] P.Echenique,J.Go´mez-Garden˜es,andY.Moreno,PhysicalRe- SelectedAreasinCommunications31,1038(2013). viewE70,056105(2004). [43] F. Tan, J. Wu, Y. Xia, and K. T. Chi, Physical Review E 89, [29] P.Echenique,J.Go´mez-Gardenes,andY.Moreno,EPL(Euro- 062813(2014). physicsLetters)71,325(2005). [44] A.Sole´-Ribalta,S.Go´mez,andA.Arenas,Physicalreviewlet- [30] Z.-X. Wu, W.-X. Wang, and K.-H. Yeung, New Journal of ters116,108701(2016). Physics10,023025(2008). [45] M. Li, M.-B. Hu, and B.-H. Wang, arXiv preprint [31] W.-X. Wang, Z.-X. Wu, R. Jiang, G. Chen, and Y.-C. Lai, arXiv:1607.05382(2016). Chaos: AnInterdisciplinary Journal of Nonlinear Science19, [46] C.D.Brummitt,R.M.DSouza,andE.Leicht,Proceedingsof 033106(2009). theNationalAcademyofSciences109,E680(2012). [32] J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, Nature [47] C.-G.Gu, S.-R.Zou, X.-L.Xu, Y.-Q. Qu, Y.-M.Jiang, H.-K. physics8,40(2012). Liu,T.Zhou,etal.,PhysicalReviewE84,026101(2011). [33] M.Kivela¨,A.Arenas,M.Barthelemy,J.P.Gleeson,Y.Moreno, [48] M.Catanzaro,M.Bogun˜a´,andR.Pastor-Satorras,PhysicalRe- andM.A.Porter,Journalofcomplexnetworks2,203(2014). viewE71,027103(2005). [34] K.-M.Lee,B.Min,andK.-I.Goh,TheEuropeanPhysicalJour- [49] P.Erd6sandA.Re´nyi,Publ.Math.Inst.Hungar.Acad.Sci5, nalB88,1(2015). 17(1960). [35] S. Boccaletti, G. Bianconi, R. Criado, C. I. Del Genio, [50] M. Magnani, B. Micenkova, and L. Rossi, arXiv preprint J.Go´mez-Garden˜es,M.Romance,I.Sendin˜a-Nadal,Z.Wang, arXiv:1303.4986(2013). andM.Zanin,PhysicsReports544,1(2014). [36] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.