ebook img

Comprehensive quality by design for pharmaceutical product development and manufacture PDF

406 Pages·2017·10.786 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comprehensive quality by design for pharmaceutical product development and manufacture

Comprehensive Quality by Design for  Pharmaceutical Product Development and Manufacture Comprehensive Quality by Design for Pharmaceutical Product Development and Manufacture Edited by Gintaras V. Reklaitis, Christine Seymour, and Salvador García‐Munoz This edition first published 2017 Copyright © 2017 by American Institute of Chemical Engineers, Inc. All rights reserved. A Joint Publication of the American Institute of Chemical Engineers and John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions. The right of Gintaras V. Reklaitis, Christine Seymour, and Salvador García‐Munoz to be identified as the editors of this work has been asserted in accordance with law. Registered Office John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA Editorial Office 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com. Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats. Limit of Liability/Disclaimer of Warranty The publisher and the authors make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties; including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of on‐going research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or website is referred to in this work as a citation and/or potential source of further information does not mean that the author or the publisher endorses the information the organization or website may provide or recommendations it may make. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this works was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising here from. Library of Congress Cataloguing‐in‐Publication Data Names: Reklaitis, G. V., 1942– editor. | Seymour, Christine, 1967– editor. | García-Munoz, Salvador, 1971– editor. Title: Comprehensive quality by design for pharmaceutical product development and manufacture / edited by Gintaras V. Reklaitis, Christine Seymour, Salvador García-Munoz. Description: Hoboken, NJ : John Wiley & Sons, 2017. | Includes bibliographical references and index. | Identifiers: LCCN 2017016418 (print) | LCCN 2017025889 (ebook) | ISBN 9781119356165 (pdf) | ISBN 9781119356172 (epub) | ISBN 9780470942376 (cloth) Subjects: LCSH: Drugs–Design. | Pharmaceutical technology–Quality control. Classification: LCC RS420 (ebook) | LCC RS420 .C653 2017 (print) | DDC 615.1/9–dc23 LC record available at https://lccn.loc.gov/2017016418 Cover Design: Wiley Cover Images: (Background) © BeholdingEye/Gettyimages; (Graph) From Chapter 2, Courtesy of Chatterjee, Moore and Nasr Set in 10/12pt Warnock by SPi Global, Pondicherry, India Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 v Contents List of Contributors xiii Preface xix 1 Introduction 1 Christine Seymour and Gintaras V. Reklaitis 1.1 Quality by Design Overview 1 1.2 Pharmaceutical Industry 2 1.3 Quality by Design Details 3 1.4 Chapter Summaries 4 References 7 2 An Overview of the Role of Mathematical Models in Implementation of Quality by Design Paradigm for Drug Development and Manufacture 9 Sharmista Chatterjee, Christine M. V. Moore, and Moheb M. Nasr 2.1 Introduction 9 2.2 Overview of Models 9 2.3 Role of Models in QbD 12 2.3.1 CQA 13 2.3.2 Risk Assessment 13 2.3.3 Design Space 14 2.3.4 Control Strategy 19 2.4 General Scientific Considerations for Model Development 20 2.4.1 Models for Process Characterization 21 2.4.2 Models for Supporting Analytical Procedures 22 2.4.3 Models for Process Monitoring and Control 22 2.5 Scientific Considerations for Maintenance of Models 22 2.6 Conclusion 23 References 23 vi Contents 3 Role of Automatic Process Control in Quality by Design 25 Mo Jiang, Nicholas C. S. Kee, Xing Yi Woo, Li May Goh, Joshua D. Tice, Lifang Zhou, Reginald B. H. Tan, Charles F. Zukoski, Mitsuko Fujiwara,  Zoltan K. Nagy, Paul J. A. Kenis, and Richard D. Braatz 3.1 Introduction 25 3.2 Design of Robust Control Strategies 31 3.3 Some Example Applications of Automatic Feedback Control 35 3.4 The Role of Kinetics Modeling 40 3.5 Ideas for a Deeper QbD Approach 42 3.6 Summary 44 Acknowledgments 46 References 47 4 Predictive Distributions for Constructing the ICH Q8 Design Space 55 John J. Peterson, Mohammad Yahyah, Kevin Lief, and Neil Hodnett 4.1 Introduction 55 4.2 Overlapping Means Approach 56 4.3 Predictive Distribution Approach 59 4.4 Examples 61 4.4.1 A Mechanistic Model Example 62 4.4.2 An Empirical Model Example 64 4.5 Summary and Discussion 68 Acknowledgment 69 References 69 5 Design of Novel Integrated Pharmaceutical Processes: A Model‐Based Approach 71 Alicia Román‐Martínez,, John M. Woodley, and Rafiqul Gani 5.1 Introduction 71 5.2 Problem Description 73 5.2.1 Mathematical Formulation 73 5.2.2 Solution Approach 75 5.3 Methodology 76 5.3.1 Superstructure 77 5.3.2 Model Development 78 5.3.3 Decomposition Strategy 79 5.4 Application: Case Study 80 5.4.1 Stage 1: Problem Definition 81 5.4.2 Stage 2: Data/Information Collection/Analysis 81 5.4.3 Stage 3: Superstructure, Model Development, and Decomposition Strategy 82 Contents vii 5.4.4 Stage 4: Generation of Feasible Candidates and Screening 82 5.4.5 Stage 5: Screening by Process Model 84 5.4.6 Stage 6: Evaluation of the Feasible Options: Calculation of the Objective Function 88 5.5 Conclusions 91 References 91 6 Methods and Tools for Design Space Identification in Pharmaceutical Development 95 Fani Boukouvala, Fernando J. Muzzio, and Marianthi G. Ierapetritou 6.1 Introduction 95 6.2 Design Space: A Multidisciplinary Concept 98 6.3 Integration of Design Space and Control Strategy 102 6.4 Case Studies 102 6.4.1 Design Space of a Continuous Mixer: Use of Data‐Driven‐Based Approaches 102 6.4.2 Roller Compaction Case Study: Integration of Control Strategy and Its Effects on the Design Space 107 6.4.2.1 Deterministic Design Space 110 6.4.2.2 Stochastic Design Space 112 6.4.2.3 Effect of Control Strategies on the Design Space 113 6.5 Conclusions 119 Acknowledgment 120 References 120 7 Using Quality by Design Principles as a Guide for Designing a Process Control Strategy 125 Christopher L. Burcham, Mark LaPack, Joseph R. Martinelli, and Neil McCracken 7.1 Introduction 125 7.2 Chemical Sequence, Impurity Formation, and Control Strategy 130 7.2.1 Chemical Sequence 130 7.2.2 Impurity Formation 131 7.2.3 Control Strategy 136 7.3 Mass Transfer and Reaction Kinetics 140 7.3.1 CO Mass Transfer Model 140 2 7.3.1.1 Determination of Henry’s Law Constant 143 7.3.1.2 Determination of the Mass Transfer Coefficient 145 7.3.2 Reaction Kinetics 149 7.3.2.1 Deprotection Reaction Kinetics 151 7.3.2.2 Calculation of Dissolution Constants 157 7.3.2.3 Coupling Reaction Kinetics 159 7.4 Optimal Processing Conditions 165 viii Contents 7.4.1 Use of Combined Models 166 7.4.2 Carbon Dioxide Removal Process Options 167 7.5 Predicted Product Quality under Varied Processing Conditions 174 7.5.1 Virtual Execution of PAR and Design Space Experiments 175 7.5.1.1 Process Parameters 177 7.5.2 Acceptable In Situ Values 177 7.5.3 PAR Simulation 178 7.5.4 Design Space Simulation: Interactions 178 7.5.5 Design Space Simulation: Screening Design Experiment and Multifactor Experiment Simulation and Data Analysis 183 7.5.6 Confirmation of the Design Space with Experiment 186 7.6 Conclusions 186 Acknowledgments 187 Notation 187 Acronyms 187 Symbols 187 Notes 189 References 189 8 A Strategy for Tablet Active Film Coating Formulation Development Using a Content Uniformity Model and Quality by Design Principles 193 Wei Chen, Jennifer Wang, Divyakant Desai, Shih‐Ying Chang, San Kiang, and Olav Lyngberg 8.1 Introduction 193 8.2 Content Uniformity Model Development 197 8.2.1 Principles of the Model 198 8.2.2 Total Residence Time and Fractional Residence Time 199 8.2.3 The RSD Model Derivation 201 8.2.4 Model Parameters and Their Measurements 204 8.2.4.1 Tablet Velocity 205 8.2.4.2 Tablet Number Density 207 8.2.4.3 Spray Zone Width 208 8.3 RSD Model Validation and Sensitivity Analysis for Model Parameters 212 8.3.1 Model Validation 213 8.3.2 Effect of Spray Zone Width on Content Uniformity 215 8.3.3 Effect of Tablet Velocity on Content Uniformity 216 8.3.4 Effect of Tablet Size on Content Uniformity 217 8.3.5 Effect of Pan Load on Content Uniformity 217 8.3.6 Effect of Coating Time on Content Uniformity 218 8.4 Model‐Based Design Space Establishment for Tablet Active Film Coating 219 Contents ix 8.4.1 Establish a Model‐Based Process Design Space at a Defined Scale 220 8.4.2 Model‐Based Scale‐Up 226 8.4.3 Model‐Based Process Troubleshooting 228 8.5 Summary 229 Notations 230 References 230 9 Quality by Design: Process Trajectory Development for a Dynamic Pharmaceutical Coprecipitation Process Based on an Integrated Real‐Time Process Monitoring Strategy 235 Huiquan Wu and Mansoor A. Khan 9.1 Introduction 235 9.2 Experimental 237 9.2.1 Materials 237 9.2.2 Equipment and Instruments 237 9.3 Data Analysis Methods 239 9.3.1 PCA and Process Trajectory 239 9.3.2 Singular Points of a Signal 239 9.4 Results and Discussion 240 9.4.1 Using Offline NIR Measurement to Characterize the Naproxen– Eudragit L100 Binary Powder Mixing Process 241 9.4.2 Using In‐Line NIR Spectroscopy to Monitor the Alcohol–Water Binary Liquid Mixing Process 242 9.4.3 Real‐Time Integrated PAT Monitoring of the Dynamic Coprecipitation Process 243 9.4.4 3D Map of NIR Absorbance–Wavelength–Process Time (or Process Sample) of the Coprecipitation Process 244 9.4.5 Process Signature Identification 245 9.4.6 Online Turbidity Monitoring of the Process 248 9.5 Challenges and Opportunities for PCA‐Based Data Analysis and Modeling in Pharmaceutical PAT and QbD Development 250 9.6 Conclusions 252 Acknowledgments 252 References 253 10 Application of Advanced Simulation Tools for Establishing Process Design Spaces Within the Quality by Design Framework 257 Siegfried Adam, Daniele Suzzi, Gregor Toschkoff, and Johannes G. Khinast 10.1 I ntroduction 257 10.2 Computer Simulation‐Based Process Characterization of a Pharmaceutical Blending Process 261 10.2.1 Background 261 x Contents 10.2.2 Goals 263 10.2.3 Material and Methods 264 10.2.3.1 Application of QbD Concepts 264 10.2.3.2 Model and Numerical Simulation 267 10.2.3.3 Process Characterization Experimental Design 268 10.2.4 Results and Discussion 272 10.2.5 Conclusion 276 10.3 Characterization of a Tablet Coating Process via CFD Simulations 276 10.3.1 Introduction 276 10.3.2 Background 278 10.3.3 Methods 280 10.3.3.1 Model and Numerical Simulation 281 10.3.3.2 Simulation Design and Characterization 284 10.3.3.3 Potentially Critical Input Parameters 286 10.3.4 Results and Discussion 287 10.3.4.1 Time Development of Mean Thickness and RSD 288 10.3.4.2 Knowledge Space 290 10.3.5 Summary 294 10.4 O verall Conclusions 294 References 295 11 Design Space Definition: A Case Study—Small Molecule Lyophilized Parenteral 301 Linas Mockus, David LeBlond, Gintaras V. Reklaitis, Prabir K. Basu, Tim Paul, Nathan Pease, Steven L. Nail, and Mansoor A. Khan 11.1 I ntroduction 301 11.2 Case Study: Bayesian Treatment of Design Space for a Lyophilized Small Molecule Parenteral 302 11.2.1 Arrhenius Accelerated Stability Model with Covariates for a Pseudo‐Zero‐Order Degradation Process 302 11.2.2 Design Space Definition 307 11.3 R esults 307 11.4 C onclusions 311 Appendix 11.A Implementation Using WinBUGS and R 311 11.A.1 WinBUGS Model 312 11.A.2 Data Used for Analysis 312 11.A.3 Calling WinBUGS from R 314 11.A.4 Calculating the Predictive Posterior Probability of Meeting Shelf Life 315 Notation 316 Acknowledgments 317 References 317 Contents xi 12 Enhanced Process Design and Control of a Multiple‐Input Multiple‐Output Granulation Process 319 Rohit Ramachandran 12.1 I ntroduction and Objectives 319 12.2 Population Balance Model 320 12.2.1 Compartmentalized Population Balance Model 322 12.3 Simulation and Controllability Studies 323 12.4 Identification of Existing “Optimal” Control‐Loop Pairings 327 12.4.1 Discarding n 328 1 12.4.2 Discarding n 328 2 12.4.3 Discarding n 328 3 12.4.4 Discarding n 329 4 12.4.5 Discussion 329 12.5 Novel Process Design 330 12.5.1 Identification of Kernels 331 12.5.2 Proposed Design and Control Configuration 331 12.6 Conclusions 335 References 336 13 A Perspective on the Implementation of QbD on Manufacturing through Control System: The Fluidized Bed Dryer Control with MPC and NIR Spectroscopy Case 339 Leonel Quiñones, Luis Obregón, and Carlos Velázquez 13.1 I ntroduction 339 13.2 T heory 340 13.2.1 Fluidized Bed Dryers (FBDs) 340 13.2.2 Process Control 341 13.2.2.1 Proportional Integral Derivative (PID) Control 342 13.2.2.2 Model Predictive Control (MPC) 342 13.3 M aterials and Methods 344 13.3.1 Materials 344 13.3.2 Equipment 344 13.3.3 MPC Implementation 346 13.4 R esults and Discussion 348 13.4.1 Process Model 348 13.4.2 Control Performance with Nominal Process Parameters 349 13.4.3 Control Performance with Non‐nominal Model Parameters 352 13.5 Continuous Fluidized Bed Drying 355 13.6 C ontrol Limitations 356 13.7 C onclusions 357 Acknowledgment 357 References 357

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.