1 Abnormal Claisen Rearrangement A. GENERALDESCRIPTIONOFTHEREACTION The first example of abnormal Claisen rearrangements was reported by Lauer and Filbert in 1936.1 In contrast to the regular Claisen rearrangement ([3,3] (cid:1) migration),2 theabnormalClaisenrearrangement3usuallyoccursfortheallylaromaticethers.Asimilar reactionalsooccursforthethermalrearrangementofcyclopropylketonestohomoallylic ketones.4 The abnormal Claisen rearrangement is believed to proceed via two consecu- tive processes, i.e., the normal ortho Claisen rearrangement of γ-alkylallyl aryl ether to an o-(α-alkylallyl) phenol and the isomerization of the resulting phenol. In general, this typeofabnormalClaisenrearrangementdoesnotoccursmoothly,exceptwheninthepres- ence of Lewis acids FeCl , even though other Lewis acids (e.g., HfCl , GaCl , ZrCl ) 3 4 3 4 havelimitedabilitytoacceleratesuchreaction.3a ItisreportedthattheabnormalClaisen rearrangementcanbepreventedbytheapplicationof1,1,1,3,3,3-hexamethyldisilazaneand N,O-bis(trimethylsilyl)acetamide.5 B. GENERALREACTIONSCHEME O OH OH [3,3] R R R Detectable Product Major Product ComprehensiveOrganicNameReactionsandReagents,byZerongWang Copyright©2010JohnWiley&Sons,Inc. 1 2 ABNORMALCLAISENREARRANGEMENT C. PROPOSEDMECHANISMS TwokindsofmechanismshavebeenproposedfortheabnormalClaisenrearrangement: theconcertedprocess(Scheme1)6andthestepwiseprocessconsistingoftwoconsecutive steps(Scheme2).4However,muchexperimentalevidenceisinconsistentwiththestepwise mechanism. SCHEME1.ConcertedmechanismforabnormalClaisenrearrangement. SCHEME2.StepwisemechanismforabnormalClaisenrearrangement. D. MODIFICATION N/A E. APPLICATIONS Thisreactionhascertainapplicationsinorganicsynthesis. F. RELATEDREACTIONS ThisreactionisrelatedtotheClaisenRearrangement. G. CITEDEXPERIMENTALEXAMPLES OH OH O HO CHO HO HO CHO 160–170°C + CHO 1 2 Reference7. CITEDEXPERIMENTALEXAMPLES 3 ◦ Caution! The reaction becomes vigorous and exothermic when heated above 200 C, especiallyonalargescale.Toa25-mLround-bottomedflaskequippedwithamagneticstir- ringbarandanaircondenserwasadded5.06g3-hydroxy-2-(2-propenyloxy)benzaldehyde (28.43mmol).TheflaskwasgentlyheatedtomeltthesolidandthenplacedinaWood’s ◦ metal bath at 165–170 C. After an induction period of a few minutes, the liquid in the flaskdarkenedandevolvedagas.Whenthereactionwasfinished(detectedbyTLC)and cooleddown,themixturewastriturated10timeswithboilinghexane.Thedark,granular residuewasdissolvedinEtOAcandadsorbedon10silica.Themixturewasseparatedby column chromatography using hexane/EtOAc/AcOH (65:35:1) as the eluent to give the majornormalClaisenrearrangementproductandthefirstabnormalClaisenrearrangement product,i.e.,2-allyl-3,4-dihydroxybenzaldehyde(1).Thehexaneextractswereevaporated andchromatographedonsilicausinghexane/EtOAc/AcOH(80:20:1)aseluenttogivethe secondabnormalClaisenrearrangementproduct,i.e.,2,3-dihydroxy-4-allylbenzaldehyde (2)andotherminorproducts. H O SnCl4 O O O Ph O CH Cl , –78°C 2 2 H Reference3a. GeneralProcedureforthePreparationofGeranylPhenylEther To a stirred suspension of 176 mg sodium hydride (60% in oil, 4.4 mmol) in 20 mL THFatroomtemperatureunderargonatmospherewasadded0.376gphenol(4.0mmol) in portions followed by a catalytic amount of hydroquinone. The mixture was stirred for 0.5h.HMPA(2mL)and0.74mLgeranylchloride(4.0mmol)weresuccessivelyadded. The whole mixture was stirred for 1 day. After decomposition of excess sodium hydride with0.5mLmethanol,themixturewaspouredontoicewaterandextractedwithether.The combinedorganiclayersweredried,concentrated,andpurifiedbycolumnchromatography onsilicagel(hexane-dichloromethaneaseluent). GeneralProcedurefortheEnantioselectiveCyclizationofGeranylPhenol EtherPromotedbytheBINOL-SnCl Complex 4 To a solution of BINOL (0.22 mmol) in 4 mL distilled CH Cl was added 200 (cid:2)L 2 2 1.0MSnCl inCH Cl (0.2mmol)at−78◦Cunderargonatmosphere.Afterthemixture 4 2 2 was stirred for several minutes at the same temperature, 0.230 g geranyl phenyl ether (0.1 mmol) was added dropwise at −78◦C. After the resulting mixture was stirred for 3 days at −78◦C, 16 (cid:2)L pyridine (0.2 mmol) was added. Then the mixture was poured ontoasaturatedNaHCO solutionandextractedwithether.Thecombinedorganiclayers 3 were dried over anhydrous MgSO and concentrated. The residue was purified by silica 4 gel column chromatography using hexane/CH Cl (4:1) as the eluent to give 98% of the 2 2 rearrangementproductasdetectedbyGC. 4 ABNORMALCLAISENREARRANGEMENT Other references related to the abnormal Claisen rearrangement can be found in the literature.8 H. REFERENCES 1. Lauer,W.M.andFilbert,W.F.,J.Am.Chem.Soc.,1936,58,1388. 2. SeeClaisenRearrangementherein(P.649). 3. (a)Nakamura,S.;Ishihara,K.andYamamoto,H.,J.Am.Chem.Soc.,2000,122,8131.(b)Patel, G.N.andTrivedi,K.N.,J.IndianChem.Soc.,1988,65,192.(c)Shah,R.R.andTrivedi,K.N., Curr.Sci.,1975,44,226.(d)Jain,A.C.andGupta,R.K.,Chem.Lett.,1974,1353.(e)Mahey, S.; Seshadri, T. R. and Mukerjee, S. K., Indian J. Chem., 1973, 11, 1126. (f) Jain, A. C. and Jain,S.M.,IndianJ.Chem.,1972,10,971.(g)Hansen,H.J.,Mech.Mol.Migr.,1971,3,177. (h)Jefferson,A.andScheinmann,F.,J.Chem.Soc.,C,1969,243.(i)Marvell,E.N.andSchatz, B.S.,TetrahedronLett.,1967,67.(j)Roberts,R.M.andLandolt,R.G.,J.Org.Chem.,1966,31, 2699.(k)Jefferson,A.andScheinmann,F.,Chem.Commun.(London),1966,239.(l)Marvell, E.N.;Anderson,D.R.andOng,J.,J.Org.Chem.,1962,27,1109.(m)Habich,A.;Barner,R.; Roberts,R.M.andSchmid,H.,Helv.Chim.Acta,1962,45,1943. 4. (a)Roberts,R.M.;Landolt,R.G.;Greene,R.N.andHeyer,E.W.J.Am.Chem.Soc.,1967,89, 1404.(b)Roberts,R.M.andLandolt,R.G.J.Am.Chem.Soc.,1965,87,2281. 5. Fukuyama,T.;Li,G.Q.andPeng,G.,TetrahedronLett.,1994,35,2145. 6. Lauer,W.M.;Doldouras,G.A.;Hileman,R.E.andLiepins,R.,J.Org.Chem.,1961,26,4785. 7. Kilenyi,S.N.;Mahaux,J.M.andVanDurme,E.,J.Org.Chem.,1991,56,2591. 8. (a)Puranik,R.;Rao,Y.J.andKrupadanam,G.L.D.,IndianJ.Chem.SectionB:Org.Chem., 2002,41B,868.(b)Schobert,R.;Siegfried,S.;Gordon,G.;Mulholland,D.;Nieuwenhuyzen,M., TetrahedronLett.,2001,42,4561.(c)Ito,H.;Sato,A.andTaguchi,T.,TetrahedronLett.,1997,38, 4815.(d)Palani,N.andBalasubramanian,K.K.,TetrahedronLett.,1993,34,5001.(e)Grieco,P. A.;Clark,J.D.andJagoe,C.T.,J.Am.Chem.Soc.,1991,113,5488.(f)Shah,R.R.andTrivedi, K.N.,IndianJ.Chem.,SectionB:Org.Chem.,1981,20B,210.(g)Okely,H.M.andGrundon, M.F.,J.Chem.Soc.,PerkinTrans.I,1981,897.(h)Yagodin,V.G.;Bunina-Krivorukova,L.I. andBal’yan,K.V.,Zh.Org.Khim.,1970,6,2513.(i)Lauer,W.M.andJohnson,T.A.,J.Org. Chem.,1963,28,2913. 2 Acetoacetic Ester Condensation (Claisen-Geuther Ester Condensation) A. GENERALDESCRIPTIONOFTHEREACTION This reaction was first reported by Geuther in 18631 and subsequently studied by Claisen.2 It is a self-condensation of ester in the presence of alkali alkoxide in alcohol to form β-keto esters (e.g. ethyl acetoacetate from ethyl acetate) and is generally known as acetoacetic ester condensation.3 This reaction was extensively explored by McElvain in 1930s.4 In general, it is carried out under basic conditions (e.g., NaOEt) to generate β-keto-estersfromaliphaticcarboxylicacidesters. B. GENERALREACTIONSCHEME O O O NaOEt R R (R = H, alkyl, aryl) O EtOH O R C. PROPOSEDMECHANISMS Thegeneralmechanismforacetoaceticestercondensationshownhereusesethylacetate asanexample.3f,4 ComprehensiveOrganicNameReactionsandReagents,byZerongWang Copyright©2010JohnWiley&Sons,Inc. 5 6 ACETOACETICESTERCONDENSATION O O O O NaOEt O Na+ O O O EtOH – O O – Na+ O O– O O O O O NaOEt D. MODIFICATION Threeesters(ethylisovalerate,ethylt-butylacetate,andethylisobutyrate)donotundergo thistypeofcondensationundernormalconditionswithsodiumethoxide,presumablydueto thesterichindrance.However,theircondensationproceedsreadilywhenmesitylmagnesium bromide is applied as the base.5 In addition, the acetoacetic ester condensation has been improvedtogivehighyieldsusingsomequaternaryammoniumsaltsoflongaliphaticchains asthephasetransfercatalystinbenzene.6 E. APPLICATIONS Thisreactionisusefulforthesynthesisofaseriesofβ-ketoesters(bothbranchedand unbranched).Inaddition,ethylacetoacetatecanbeappliedtothepreparationofγ-diketones inreactionwithepoxidesfollowedbyoxidationanddecarboxylation.7 F. RELATEDREACTIONS ThisreactionisrelatedtoAcetoaceticEsterSynthesis. G. CITEDEXPERIMENTALEXAMPLES Ph Ph O NaOEt Ph O O O O 55% Reference3a. Toa500-mLflaskequippedwithasealedstirrerandarefluxcondenserwereaddedfresh NaOEt(preparedfrom4.6gsodium)and70.0gethylphenylacetate(0.42mol).Theflask ◦ washeatedwithstirringinasteambathatabout95 Cfor6h;however,thesolidmaterial (NaOEt) in the reaction mixture completely disappeared after a few minutes of heating. Thentheflaskwascooledtoroomtemperatureandtreatedcarefullywith15mLaceticacid in 100 mL water. At this point, a considerable amount of ethyl α,γ-diphenylacetoacetate precipitated. Ether (150 mL) was added to return this precipitate to solution, and the REFERENCES 7 separatedaqueouslayerwasfurtherextractedwith50mLether.Thecombinedetherlayers werewashedsufficientlywithsaturatedsodiumbicarbonatesolution.Aftertheremovalof ether,theresiduewasallowedtocrystallize,andtheresultingcrystallinemasswasagain ◦ added to 20 mL alcohol and kept at 0 C. The precipitate was filtered off by suction and driedoveraporousplate,and28gofmaterialwasobtained.Thefiltratewasthendistilled from an oil bath to remove alcohol, and the unreacted ethyl phenylacetate was collected ◦ at 5 mmHg. The residue was dissolved in another 10 mL hot alcohol and cooled to 0 C. Anadditional3gethylα,γ-diphenylacetoacetatewasrecovered.Theyieldwas55%onthe basis of sodium ethoxide used, or 78% based on the ethyl phenylacetate recovered. The ◦ producthasanm.p.75–77 C. R O NaOEt O R R O O O R = C H , n = 1, 2, ...12 n 2n+1 Reference3f. Toa125mLClaisenflaskequippedwitha35-cm-longfractioningcolumnwereplaced 0.1molcorrespondingesterand0.05molNaOEt.Thefractioningcolumnwasattachedto areceivingflask(withoutcooling)thatwasinturnattachedthroughasodalimetowerand asafetybottletoamanometerandawaterpump.Theflaskwasthenheatedcarefullyinan oilbathtoatemperatureandunderapressurethatcausedamoderate,butnottoovigorous, evolutionofalcoholvapor,asshownbytheebullitionofthereactionmixture.Therequired temperatureandpressurevariedwiththeboilingpointoftheesters;thelowerestersrequired lowerreactiontemperaturesandhigherpressurestopreventthelossofester.Consequently, the time necessary for the completion of the reaction in these cases was increased. After thereactionhadproceededforsometime,thetemperaturesandpressurescouldberaised andlowered,respectively,untilthereactionmassceasedebullition.Thereactionproduct aftercoolingwastreatedwiththecalculatedquantityof30%aceticacidandshakenvig- orouslyuntilthesodiumsalthadbeencompletelydecomposed.Theβ-ketoesterwasthen extracted with 25 mL ether followed by the standard workup procedure. This procedure wasquitesatisfactoryforalloftheestersexceptethylα-pelargonylpelargonateandethyl α-caprylcaprate,bothofwhichsufferedasmallamountofpyrolysistothecorresponding ketone. Otherreferencesrelatedtoacetoaceticestercondensationarecitedintheliterature.8 H. REFERENCES 1. Geuther,A.,Arch.Pharm.,1863,106,97. 2. Claisen,R.L.andLowman,O.,Ber.,1887,20,651. 3. (a)Roberts,D.CandMcElvain,S.M.,J.Am.Chem.Soc.,1937,59,2007.(b)Meincke,E.R. andMcElvain,S.M.,J.Am.Chem.Soc,1935,57,1443.(c)Cox,R.F.B.andMcElvain,S.M., J.Am.Chem.Soc.,1934,56,2459.(d)Fisher,N.andMcElvain,S.M.,J.Am.Chem.Soc.,1934, 56,1766.(e)Thomas,W.B.andMcElvain,S.M.,J.Am.Chem.Soc.,1934,56,1806.(f)Cox, R.F.B.;Kroeker,E.H.andMcElvain,S.M.,J.Am.Chem.Soc.,1934,56,1173.(g)Briese,R. 8 ACETOACETICESTERCONDENSATION R.andMcElvain,S.M.,J.Am.Chem.Soc.,1933,55,1697.(h)Prill,E.A.andMcElvain,S.M., J.Am.Chem.Soc.,1933,55,1233.(i)Snell,J.M.andMcElvain,S.M.,J.Am.Chem.Soc.,1933, 55,416.(j)Snell,J.M.andMcElvain,S.M.,J.Am.Chem.Soc.1931,53,2310.(k)Snell,J.M. andMcElvain,S.M.,J.Am.Chem.Soc.,1931,53,750.(l)McElvain,S.M.,J.Am.Chem.Soc., 1929,51,3124. 4. Frampton,O.D.andNobis,J.F.,Ind.Eng.Chem.,1953,45,404. 5. Spielman,M.A.andSchmidt,M.T.,J.Am.Chem.Soc.,1937,59,2009. 6. Durst,H.D.andLiebeskind,L.,J.Org.Chem.,1974,39,3271. 7. Adams,R.M.andVanderwerf,C.A.,J.Am.Chem.Soc.,1950,72,4368. 8. (a) Chandra, M. and Mehrotra, J. K., J. Indian Chem. Soc., 1970, 47, 46. (b) Colonge, J. and Cayrel,J.-P.,Bull.Soc.Chim.Fr.,1965,3596.(c)Shivers,J.C.;Hudson,B.E.andHauser,C.R., J.Am.Chem.Soc.,1943,65,2051.(d)Hauser,C.R.andHudson,B.E.,Org.React.,1942,1,266. (e)Roland,J.R.andMcElvain,S.M.,J.Am.Chem.Soc.,1937,59,132.(f)Adickes,F.,Ber., 1932,65B,522.(g)Franklin,M.C.andShort,W.F.,J.Chem.Soc.,1928,591.(h)Scheibler,H. andMarhenkel,E.,Ann.,1927,458,1.(i)Scheibler,H.,Angew.Chem.,1923,36,6.(j)Branch, G.E.K.andBranch,H.E.H.,J.Am.Chem.Soc.,1918,40,1708. 3 Acetoacetic Ester Synthesis A. GENERALDESCRIPTIONOFTHEREACTION ThisreactionwasfirstreportedbySimonsenin1908;1 unfortunately,itwasnotnamed afterthisinventor.Itisthesynthesisofα-substitutedaceticacidestersorsubstitutedacetones from acetoacetic ester by treatment of ethyl acetoacetate with a strong base, followed by alkylationandsubsequentdeacetylationordecarboxylation;itisknownasacetoaceticester synthesis.2 Being adjacent to two electron-withdrawing groups (i.e., carbonyl and ester groups),theα-methyleneprotonsinβ-ketoesters(e.g.,acetoaceticesters)areveryacidic; the pKa of which could be as low as 10.3 Therefore, the α-methylene proton is readily deprotonated,andtheresultingα-carbanioncanbealkylatedoracylated.Inaddition,the acetoaceticesterscanalsobealkylatedinacidicconditionviatheformofenolintermediate, althoughsomeunexpectedproductsmightform.4Thenewsubstitutedβ-ketoestersarethen eithertreatedwithaconcentratedbase(normallystrongbase)togivesubstitutedestersor arehydrolyzedundermildconditions(eitheracidicorbasic)togivesubstitutedacetones throughdecarboxylation.5,6 B. GENERALREACTIONSCHEME O O O O O Base R Dilute OH– R O R′ + ROH O R′-X or H+ R′ Conc. alcoholic alkali O R′ R + AcO– O ComprehensiveOrganicNameReactionsandReagents,byZerongWang Copyright©2010JohnWiley&Sons,Inc. 9 10 ACETOACETICESTERSYNTHESIS C. PROPOSEDMECHANISMS Displayedhereisageneralmechanismforacetoaceticestersynthesisfromethylacety- lacetate. D. MODIFICATION N/A E. APPLICATIONS Besidestheapplicationstosynthesizeketonesandesters,thisreactionhasbeenusedto synthesize7-nitro-indolebymein1995,asshowninthefollowingreactionroute. O MeI, NaOEt O N2+Cl– EtOH NO2 O O O O O N N N NO OEt H 2 NO 2 F. RELATEDREACTIONS ThisreactionisverycloselyrelatedtoAcetoaceticEsterCondensation;andmechanisti- cally,thecleavageofβ-ketoestersunderstrongbaseconditionsissimilartotheRetro-Aldol Addition.
Description: