Comprehensive Organic Functional Group Transformations, Volume 4 Elsevier, 2003 Editors-in-Chief: Alan R. Katritzky, Otho Meth-Cohn, and Charles W. Rees Synthesis: Carbon with Two Heteroatoms, Each Attached by a Single Bond Part I: Tetracoordinated Carbon Functions Bearing Two Heteroatoms, R CXX′ 2 4.01 Dihalo Alkanes, R C(Hal) , Pages 1-40, Robert A. Hill 2 2 4.02 Functions Incorporating a Halogen and a Chalcogen, Pages 41-93, Niall W. A. Geraghty 4.03 Functions Incorporating a Halogen and Another Heteroatom Group Othe Than a Chalcogen, Pages 95-157, Alex C. Campbell and David R. Jaap 4.04 Functions Bearing Two Oxygens, R1 C(OR2) , Pages 159-214, David 2 2 T. Macpherson and Harshad K. Rami 4.05 Functions Incorporating Oxygen and Another Chalcogen, Pages 215-241, Richard H. Wightman 4.06 Functions Incorporating Two Chalcogens Other Than Oxygen, Pages 243-291, Yannick Vallée and Andrew Bulpin 4.07 Functions Incorporating a Chalcogen and a Group 15 Element, Pages 293-349, Christopher D. Gabbutt and John D. Hepworth 4.08 Functions Incorporating a Chalcogen and a Silicon, Germanium, Boron or Metal, Pages 351-402, Max J. Gough and John Steele 4.09 Functions Bearing Two Nitrogens, Pages 403-449, Derek R. Buckle and Ivan L. Pinto 4.10 Functions Containing a Nitrogen and Another Group 15 Element, Pages 451-504, Frances Heaney by kmno4 4.11 Functions Incorporating a Nitrogen and a Silicon, Germanium, Boron or Metal, Pages 505-541, John Steele and Max J. Gough 4.12 Functions Containing One Phosphorus and Either Another Phosphorus or As, Sb, Bi, Si, Ge, B or a Metal, Pages 543-589, R. Alan Aitken 4.13 Functions Containing at Least One As, Sb or Bi with or without a Metalloid (Si or Ge) or a Metal, Pages 591-600, William M. Horspool 4.14 Functions Containing at Least One Metalloid (Si, Ge or B) Together with Another Metalloid or Metal, Pages 601-665, Christopher G. Barber 4.15 Functions Containing Two Atoms of the Same Metallic Element, Pages 667-703, William J. Kerr and Peter L. Pauson 4.16 Functions Containing Two Atoms of Different Metallic Elements, Pages 705-727, William J. Kerr and Peter L. Pauson Part II: Tricoordinated Carbon Functions Bearing Two Heteroatoms, R C=CXX′ 2 4.17 Functions Incorporating Two Halogens or a Halogen and a Chalcogen, Pages 729-788, Peter D. Kennewell, Robert Westwood and Nicholas J. Westwood 4.18 Functions Incorporating a Halogen or Another Group other than a Halogen or a Chalcogen, Pages 789-822, David I. Smith 4.19 Functions Bearing Two Chalcogens, Pages 823-877, Gary N. Sheldrake 4.20 Functions Containing a Chalcogen and Any Group Other Than a Halogen or a Chalcogen, Pages 879-965, Peter D. Kennewell, Robert Westwood and Nicholas J. Westwood 4.21 Functions Containing at Least One Nitrogen and No Halogen or Chalcogen, Pages 967-1020, Graham L. Patrick 4.22 Functions Containing at Least One Phosphorus, Arsenic, Antimony or Bismuth and No Halogen, Chalcogen or Nitrogen, Pages 1021-1042, John M. Berge 4.23 Functions Containing at Least One Metalloid (Si, Ge or B) and No Halogen, Chalcogen or Group 15 Element; also Functions Containing Two Metals, Pages 1043-1070, Richard A. B. Webster Part III: Tri- and Dicoordinated Ions, Radicals and Carbenes Bearing Two Heteroatoms (RC+X1X2, RC−X1X2, RC·X1X2, :CX1X2) 4.24 Tri- and Dicoordinated Ions, Radicals and Carbenes Bearing Two Heteroatoms (RC+X1X2, RC−X1X2, RC · X1X2, :CX1X2), Pages 1071-1083, William M. Horspool 4.25 References to Volume 4, Pages 1085-1229 by kmno4 4.01 Dihalo Alkanes, R C(Hal) 2 2 ROBERT A. HILL UniversityofGlasgow,UK 3[90[0 GENERALMETHODS 1 3[90[1 DIFLUOROALKANES*RCF 1 1 1 3[90[1[0 Di~uoroAlkanesfromAlkanes 1 3[90[1[1 Di~uoroAlkanesfromDihaloAlkanes 2 3[90[1[2 Di~uoroAlkanesfromTrihaloAlkanes 4 3[90[1[3 Di~uoroAlkanesfromAlkenes 4 3[90[1[4 Di~uoroAlkanesfromAlkynes 5 3[90[1[5 Di~uoroAlkanesfromDi~uorocarbene 6 3[90[1[6 Di~uoroAlkanesfromAldehydesandKetones 7 3[90[1[7 Di~uoroAlkanesfromImines 09 3[90[2 DICHLOROALKANES*RCCl 00 1 1 3[90[2[0 DichloroAlkanesfromAlkanes 00 3[90[2[1 DichloroAlkanesfromDihaloAlkanes 02 3[90[2[2 DichloroAlkanesfromTrihaloAlkanes 02 3[90[2[3 DichloroAlkanesfromAlkenes 03 3[90[2[4 DichloroAlkanesfromAlkynes 04 3[90[2[5 DichloroAlkanesfromDichlorocarbene 05 3[90[2[6 DichloroAlkanesfromAldehydesandKetones 07 3[90[2[7 DichloroAlkanesfromImines 08 3[90[3 DIBROMOALKANES*RCBr 08 1 1 3[90[3[0 DibromoAlkanesfromAlkanes 08 3[90[3[1 DibromoAlkanesfromDihaloAlkanes 11 3[90[3[2 DibromoAlkanesfromTrihaloAlkanes 12 3[90[3[3 DibromoAlkanesfromAlkenes 12 3[90[3[4 DibromoAlkanesfromAlkynes 13 3[90[3[5 DibromoAlkanesfromDibromocarbene 13 3[90[3[6 DibromoAlkanesfromAldehydesandKetones 14 3[90[3[7 DibromoAlkanesfromImines 16 3[90[3[8 DibromoAlkanesfromCarboxylicAcids 16 3[90[4 DIIODOALKANES*RCI 17 1 1 3[90[4[0 DiiodoAlkanesfromAlkanes 17 3[90[4[1 DiiodoAlkanesfromHaloAlkanes 17 3[90[4[2 DiiodoAlkanesfromAlkynes 18 3[90[4[3 DiiodoAlkanesfromDiiodocarbene 18 3[90[4[4 DiiodoAlkanesfromImines 18 3[90[5 FLUOROHALOALKANES*RCFHal 29 1 3[90[5[0 Chloro~uoroAlkanes*RCClF 29 1 3[90[5[0[0 Chloro~uoroalkanesfromhaloalkanes 29 3[90[5[0[1 Chloro~uoroalkanesfromhaloalkenes 29 3[90[5[0[2 Chloro~uoroalkanesfromchloro~uorocarbene 21 3[90[5[0[3 Chloro~uoroalkanesfromimines 21 3[90[5[0[4 Chloro~uoroalkanesfromcarboxylicacids 22 3[90[5[1 Bromo~uoroAlkanes*RCBrF 22 1 3[90[5[1[0 Bromo~uoroalkanesfromhaloalkanes 22 3[90[5[1[1 Bromo~uoroalkanesfromhaloalkenes 23 0 1 DihaloAlkanes 3[90[5[1[2 Bromo~uoroalkanesfrombromo~uorocarbene 24 3[90[5[1[3 Bromo~uoroalkanesfromcarboxylicacids 24 3[90[5[2 FluoroiodoAlkanes*RCFI 25 1 3[90[5[2[0 Fluoroiodoalkanesfromhaloalkanes 25 3[90[5[2[1 Fluoroiodoalkanesfromhaloalkenes 25 3[90[5[2[2 Fluoroiodoalkanesfrom~uoroiodocarbene 25 3[90[5[2[3 Fluoroiodoalkanesfromcarboxylicacids 26 3[90[6 CHLOROHALOALKANES*RCClHal"notF# 26 1 3[90[6[0 BromochloroAlkanes*RCBrCl 26 1 3[90[6[0[0 Bromochloroalkanesfromhaloalkanes 26 3[90[6[0[1 Bromochloroalkanesfromhaloalkenes 27 3[90[6[0[2 Bromochloroalkanesfrombromochlorocarbene 27 3[90[6[0[3 Bromochloroalkanesfromketones 27 3[90[6[0[4 Bromochloroalkanesfromcarboxylicacids 27 3[90[6[1 Chloroiodoalkanes*RCClI 28 1 3[90[6[1[0 Chloroiodoalkanesfromhaloalkanes 28 3[90[6[1[1 Chloroiodoalkanesfromhaloalkenes 28 3[90[6[1[2 Chloroiodoalkanesfromketones 39 3[90[6[1[3 Chloroiodoalkanesfromcarboxylicacids 39 3[90[7 BROMOIODOALKANES*RCBrI 39 1 3[90[0 GENERALMETHODS There are many general methods for the preparation of ‘em!di~uoro\ ‘em!dichloro and ‘em! dibromoalkanes[Thesearegivenindetailinthefollowingsections[Directhalogenationofalkanes is of limited use as there is generally little control of the site of halogenation[ The method can be useful\ however\ when there is some control such as halogenation of benzylic positions or a to a carbonylgroup[Replacementofonehalogenforanothercanbeusefulfordiiodoandmixed‘em! dihalo alkanes\ but it is often very di.cult to control the degree of exchange[ One of the major problemsinthegenerationof‘em!dihaloalkanesbythismethodisthepossibilityofeliminationof hydrogenhalideunderthereactionconditions[Thisisaparticularproblemfordihaloalkaneswhere oneofthehalidesisbromineoriodine[ Addition of hydrogen halides or halogens to halo alkenes has been used extensively for the production of dihalo alkanes[ Radical addition of hydrogen halides often leads to 0\1!dihalo compoundsandcaremustbetakentoreducethepossibilityofradicalformation[Otherproblems ofdirectionofadditionoccurwheninterhalogencompoundsareaddedacrosshaloalkenes^mixtures ofproductsareoftenobtained[ Dihalocarbenes have been used extensively in addition reactions to double bonds to form dihalocyclopropanederivatives[Therearemanymethodsforthegenerationofcarbenesore}ectinga carbenetransfer\particularlyfordi~uoro!\dichloro!anddibromocarbene[Theotherdihalocarbenes havebeenstudiedlessextensively[ Theconversionofanaldehydeorketoneintoadihaloalkaneworkswellwith~uoroandchloro alkanes\butbromoandiodoalkanesareeasilyhydrolysedbacktothealdehydeandketone[Many preparationsofdibromoanddiiodoalkanesresultincarbonylcompoundsassideproducts[ 3[90[1 DIFLUOROALKANES*R CF 1 1 Thepreparationof‘em!di~uoroalkanesisincludedinageneralreviewbyHenneonthesynthesis ofaliphatic~uorinecompounds(cid:2)33OR"1#38(cid:3)[ 3[90[1[0 Di~uoroAlkanesfromAlkanes Direct ~uorination of saturated compounds has been used since 0899 to replace hydrogen by ~uorine (cid:2)33OR"1#38(cid:3)[ However\ the reaction is not easy to control^ most organic compounds react violentlywith~uorine[Thereactionofelementalcarbonwith~uorinehasbeenreportedtogivea mixture of products from which per~uoropropane\ per~uorobutane and per~uoropentane have been isolated (cid:2)26JA0396(cid:3)[ This method is clearly not of general application[ More!controlled ~uo! rination of ethane using ~uorine diluted with nitrogen yielded partially ~uorinated ethanes from Di~uoroAlkanes 2 which CHF CHF and CHF CH F could be isolated (cid:2)39JA0060(cid:3)[ Electrochemical ~uorination of 1 1 1 1 ethanewithasolutioninhydrogen~uorideisamorecontrollablemethodbutagainmixtureswere obtained\ however\ CH CHF could be obtained in usable amounts (cid:2)55BCJ108(cid:3)[ Cobalt tri~uoride 2 1 is a useful reagent for the per~uorination of unsaturated compounds[ For example\ cyclopentane can be per~uorinated "Equation "0##\ however the substitution of the last few hydrogens in a compoundrequireshighertemperatures(cid:2)40JA3130(cid:3)[Per~uorocyclohexanehasbeenpreparedfrom benzene with ~uorine and a catalyst "Equation "1## (cid:2)49JCS1578(cid:3)[ Gold was found to be the best catalyst[Per~uorocyclohexanehasalsobeenmadefrommethylbenzoatebytheactionofpotassium tetra~uorocobaltateathightemperatures"Equation"2##(cid:2)62JFC"2#218(cid:3)[Activemethylenecompounds havebeenreportedtobe~uorinatede.cientlywithtwoequivalentsofsodiumethoxideinethanol followedbyperchloryl~uoride"Equations"3#(cid:1)"5##(cid:2)47JA5422(cid:3)^however\alaterreportsuggeststhat thereactionisquitecomplex(cid:2)55JOC805(cid:3)[ F F F F CoF3, 325 °C F F (1) F F F F F F F F F2, Au F F (2) 40% F F F F F F F F F F COMe 2 KCoF4, 300 °C F F (3) 25% F F F F F F O O COEt EtONa, EtOH, FClO3 CO2Et (4) 2 59% F F CO2Et EtONa, EtOH, FClO3 F CO2Et (5) CO2Et 84% F CO2Et O O O O EtONa, EtOH, FClO3 (6) 77% F F 3[90[1[1 Di~uoroAlkanesfromDihaloAlkanes The substitution of halide in dihalo alkanes using metal ~uorides is of general use for the preparation of di~uoro alkanes as the corresponding dichloro and dibromo alkanes are generally more accessible[ The ease of substitution is I(cid:29)Br(cid:29)Cl^ the substitution of chlorine frequently requires very high temperatures[ Potassium ~uoride will displace the chlorine in the relatively reactivea!ketoalkylchlorides"forexampleEquation"6##(cid:2)75JA6628(cid:3)\whereasthechlorineofN\N! diethylchloro~uoroacetamide can only be displaced at high temperatures "Equation "7## (cid:2)66CCC1426(cid:3)[ Substitution of unreactive chlorines such as in dichloromethane requires harsher conditions\forexampleameltofpotassiumhydrogendi~uoride\KHF "Equation"8##(cid:2)55AG"E#203(cid:3)[ 1 KHF hasalsobeenusedtoprepare0\0!di~uoroacetonefrom0\0!dichloroacetone"Equation"09## 1 (cid:2)60JCS"C#168(cid:3)[Mercuric~uoridehasbeenextensivelyusedforthepreparationof~uoroalkanesby displacement (cid:2)33OR"1#38(cid:3)[ Bromine is substituted at low temperature with good yields "Equation "00##whereaschlorinerequireshightemperaturesandresultsinlowyields"Equation"01##(cid:2)25JA778(cid:3)[ 3 DihaloAlkanes O O KF Cl F Ph Ph (7) 28% Cl F O O Cl KF, 140 °C F NEt NEt (8) 2 2 75% F F Cl Cl KHF2 F F (9) 82% O O Cl KHF2 F (10) 50% Cl F Br F HgF2, 0 °C (11) Br F Cl F HgF2, 140 °C (12) Cl Cl Cl 10% F Dibromo alkanes are generally smoothly substituted by mercuric ~uoride "Equation "02## but 2\2!dibromobutan!1!one gives side reactions including the production of diacetyl "Equation "03## (cid:2)66JOC2416(cid:3)[ Silver ~uoride has been used in these reactions^ however\ it is di.cult to prepare in anhydrous form and it forms insoluble\ complex silver halides (cid:2)33OR"1#38(cid:3)[ Antimony tri~uoride with a catalytic amount of bromine converts dichloro"diphenyl#methane into di~uoro! "diphenyl#methaneinhighyield"Equation"04##(cid:2)27JA753(cid:3)[Antimonypenta~uorideisverye}ective at substituting alkyl bromides "Equation "05## and alkyl chlorides "Equation "06## but it does not exchangevinylhalides(cid:2)55JA1370(cid:3)[Amixtureofantimonytri~uoride\antimonypentachlorideand hydrogenchloride hasbeenusedto convert1\1!dichlorobutaneinto1\1!di~uorobutane "Equation "07##butmanysidereactionsoccurred(cid:2)68JFC"02#214(cid:3) O O HgF2 (13) Ph Ph 89% Br Br F F O O HgF2 (14) Br Br O Cl Cl SbF3, Br2 (cat.), 140 °C F F (15) Ph Ph Ph Ph Br Br F F SbF5, 109 °C (16) 51% Br Br Br Br Cl Cl F F SbF5, 110 °C (17) Cl Cl Cl Cl Cl Cl SbF3, SbCl5, HCl F F (18) Di~uoroAlkanes 4 3[90[1[2 Di~uoroAlkanesfromTrihaloAlkanes Reduction of the bromodi~uoromethyl group with sodium borohydride in DMSO seems an attractivemethodofpreparationofcompoundscontainingthedi~uoromethylgroupaslongasthe startingmaterialisreadilyavailableas"Equation"08##(cid:2)80JOC3211(cid:3)[ F F F NaBH4, DMSO Br F (19) 51% Br 3[90[1[3 Di~uoroAlkanesfromAlkenes Addition of an acid to a 0\0!di~uoro alkene will lead to a di~uoromethyl group[ The high electronegativity of ~uorine ensures that hydrogen adds to the carbon bearing the ~uorines[ Thus hydrogen bromide "Equation "19## and hydrogen iodide "Equation "10## add e.ciently to 0\0! di~uoroethene(cid:2)45JCS50(cid:3)[Methanolwilladdacrosstetra~uoroetheneinthepresenceofacatalytic amount of sodium methoxide "Equation "11## (cid:2)40JA0218(cid:3)[ The addition to the electron!de_cient tetra~uoroethene is initially by nucleophilic attack[ Cyanide will add to chlorotri~uoroethene to give\ after acid hydrolysis\ 2!chloro!1\1\2!tri~uoropropanoic acid "Equation "12## (cid:2)59OSC"4#128(cid:3)[ Tetra~uoroethenecanbealkylatedusingaluminumtrichlorideasacatalyst\forexample\dichloro! ~uoromethanecanbee}ectivelyaddedacrossthedoublebondas"Equation"13##(cid:2)60CCC0756(cid:3)[ F F HBr Br (20) F 100% F F F HI I (21) F 100% F F F MeOH, MeONa (cat.), 35 °C, 5 h F F F (22) F OMe 81% F F F i, KCN F ii, H+ F Cl Cl (23) F 76–79% CO2H F F F F F CHFCl2, AlCl3, 10 °C, 5 h F F Cl (24) 58% FC 3 F Cl The(cid:2)1(cid:27)1(cid:3)adductsof~uoroalkenescanbepreparedathightemperatures\probablyinvolvinga radicalmechanism[Tetra~uoroethenecanbedimerisedat599>Ctogiveper~uorobutane"Equation "14##^ temperatures above 599>C give various side reactions including polymerisation (cid:2)42JCS1972(cid:3)[ Mixed cycloaddition reactions such as tetra~uoroethene with ethene as in "Equation "15##\ with butadiene "Equation "16## and with acrylonitrile "Equation "17## are possible\ as they occur much morereadilythanthedimerisationoftetra~uoroethene(cid:2)38JA389(cid:3)[Tetra~uoroethenewillalsoadd to acetylene to give 2\2\3\3!tetra~uorocyclobutene "Equation "18## (cid:2)50JA271(cid:3)[ A variety of other ~uorinated ethenes will cyclodimerise "Equations "29# and "20## at lower temperatures than tetra! ~uoroethene (cid:2)36JA168(cid:3)[ Intramolecular (cid:2)1(cid:27)1(cid:3) cycloaddition of 0\0!di~uorobutadiene takes place underUVirradiation"Equation"21##(cid:2)76JOC0761(cid:3)[ 5 DihaloAlkanes F F F 600 °C F F F F (25) 42% F F F F F F F 150 °C, 8 h F F F + H2C CH2 (26) F 40% F F F F 125 °C, 8 h F F F + (27) F 90% F F F F F F + CN 150 °C, 8 h FF (28) 84% F CN F F F F F + H H 225 °C, 12 h F (29) F 35% F F F F F 200 °C, 12 h F F Cl (30) F Cl Cl 80% Cl Cl Cl F F F 200 °C, 8 h F F Cl (31) F Cl Cl 80% F F F F hn , 4 days F F (32) F 3[90[1[4 Di~uoroAlkanesfromAlkynes Theadditionoftwoequivalentsofhydrogen~uorideacrossatriplebondisageneralmethodof preparingdi~uoroalkanes"Equation"22##(cid:2)36JA170(cid:3)[Fluorinationofalkynesby~uorineinmeth! anolleadstotheformationofa‘em!di~uorodimethylacetal"Equation"23##(cid:2)75JA6628(cid:3)[ HF F Cl F (33) Cl 50% OMe MeO F2, MeOH F Ph Ph (34) F Di~uoroAlkanes 6 3[90[1[5 Di~uoroAlkanesfromDi~uorocarbene Thegenerationofdi~uorocarbenehasbeenextensivelyreviewed(cid:2)52OR"02#44\B!58MI390!90\B!60MI 390!90\66FCR008\B!74MI390!90(cid:3)[ Di~uorocarbene transfer is most commonly achieved by decompo! sition of a tri~uoromethyl(cid:1)metal complex[ Pyrolysis of trimethyltri~uoromethyl tin generates per~uorocyclopropane "Equation "24##\ formed by di~uorocarbene dimerisation to tetra! ~uoroethene\ which undergoes a di~uorocarbene addition (cid:2)59JA0777(cid:3)[ Pyrolysis of potassium tri~uoromethyl~uoroborate also gives per~uorocyclopropane together with per~uorocyclobutane "Equation "25## (cid:2)59JA4187(cid:3)[ The complex of bis"tri~uoromethyl#cadmium and DIGLYME reacts with acetyl chloride to produce acetyl ~uoride and di~uorocarbene\ which can be trapped with 1\2!dimethylbut!1!ene in high yield "Equation "26## (cid:2)70JA1884(cid:3)[ Metallic lead and dibromo! di~uoromethane have been used to produce di~uorocarbene and its capture by several alkenes studied(cid:2)70ZN"B#0264(cid:3)[TetrabutylammoniumbromidewasaddedtoformacomplexwiththePbBr 1 producedinthereaction[Excellentyieldswereachievedwith1\2!dimethylbut!1!ene"Equation"27## buttheyieldsdecreasewithlesssubstitutedalkenes"Equations"28#and"39##[ F F 150 °C, 20 h Me3SnCF3 F F (35) F F F F F F 300 °C F F KCF3BF3 F F + (36) F F F F F F F F (CF3)2Cd, DIGLYME, AcCl, –27 °C (37) 70% F F CBr2F2, Pb, Bu4NBr (38) 80–90% F F Ph CBr2F2, Pb, Bu4NBr Ph (39) 55% F F Ph CBr2F2, Pb, Bu4NBr (40) 17% Ph Bromodi~uoromethylphosphonium salts\ prepared in situ\ are good sources of di~uorocarbene[ Treatment with caesium ~uoride formed di~uorocarbene\ which added to 1\2!dimethylbut!1!ene "Equation"30##(cid:2)62JA7356(cid:3)\whereaspotassium~uoridewasusedlikewisewithbutadiene"Equation "31## (cid:2)71JA1383(cid:3)[ Di~uorotris"tri~uoromethyl#phosphorane has been used to transfer di~uoro! carbenetoavarietyofhalogenatedalkenes"Equation"32##(cid:2)69JCS"C#067(cid:3)[ F F CBr2F2, PPh3, CsF, RT, 24 h (41) 79% F F CBr2F2, PPh3, KF (42) 55% 7 DihaloAlkanes F F F Cl (CF3)3PF2, 120 °C, 24 h F Cl (43) Cl Cl Cl Cl Oneofthemostusefulreagentsforgeneratingdi~uorocarbeneisphenyltri~uoromethylmercury (cid:2)61ACR54(cid:3)^ an example of its use is the addition of di~uorocarbene to benzobarrelene "Equation "33##(cid:2)68TL0802(cid:3)[Oneoftheearliestmethodsusedtogeneratedi~uorocarbenewaspyrolysisofthe sodiumchlorodi~uoroacetate(cid:2)59PCS70\53TL0350(cid:3)^ithasbeenusedtoaddtoadoublebond"Equa! tion"34##(cid:2)62TL0208(cid:3)[Thehinderedbase\sodiumbis"trimethylsilyl#amide\hasbeenusedtogenerate di~uorocarbene from chlorodi~uoromethane[ The di~uorocarbene reacted with a malonate anion togiveanadditionproduct"Equation"35##(cid:2)74TL1334(cid:3)[ PhHgCF3 (44) F F O O O O F2ClCCO2Na, DIGLYME, reflux (45) O F F O F COEt 2 COEt CHClF2, NaN(TMS)2 (3 equiv.) F 2 N COEt (46) 2 N CO Et 2 Ph Ph 3[90[1[6 Di~uoroAlkanesfromAldehydesandKetones Sulfurtetra~uoridewasthe_rstreagentusedtoconvertaldehydesandketonesinto‘em!di~uoro alkanes[ Two excellent reviews cover the use of sulfur tetra~uoride (cid:2)63OR"10#0\74OR"23#208(cid:3)^ a few exampleswillbegivenheretohighlighttheadvantagesanddisadvantages[Aldehydesandketones witha!hydrogenatomsneedtobetreatedatlowtemperaturesforlongperiodstopreventdecompo! sitionasshowninEquations"36#and"37#(cid:2)60JOC707(cid:3)[Aromaticaldehydes"Equation"38##(cid:2)60T834(cid:3) andhighertemperatures\generally049(cid:1)199>C\givemuchhigheryields[Formaldehyde"intheform of paraformaldehyde# at a high temperature "049>C# gave only a modest yield "Equation "49## (cid:2)59JA432(cid:3)[ O F F SF4, CH2Cl2, 30 °C, 120 h (47) 39% O F F SF4, CH2Cl2, 30 °C, 48 h (48) 70% CHO F F SF4, 150 °C, 6 h (49) F F
Description: