4.01 Overview and Introduction KenjiMori,TheUniversityofTokyo,Tokyo,Japan ª2010ElsevierLtd.Allrightsreserved. 4.01.1 ScopeofVolume4 1 4.01.2 CommentsonProgressintheChemistryandBiologyofSemiochemicals 1 4.01.2.1 ProgressinStructureElucidation 1 4.01.2.2 ComplexityoftheMulticomponentPheromone 2 4.01.2.3 ProgressinUnravelingtheStereochemicalAspectsofChemicalEcology 3 4.01.2.4 DualRolesofSemiochemicalsasPheromonesandKairomones 4 4.01.2.5 NewTrendsinMammalianChemicalEcology 5 4.01.3 FuturePerspectivesinChemicalEcology 6 References 6 4.01.1 Scope of Volume 4 The present Volume 4 is a continuation of Volume 8 of the first edition,1 which summarizes progress in chemicalecology.Chemicalecologyisanexpandingnewdisciplineinthestudyofchemistryandbiologyof semiochemicalsorbiofunctionalmolecules,whichspreadsinformationamongindividuals. Thisvolumetreatspheromones(Chapters4.04–4.06),defensivesubstancesandtoxins(Chapters4.08–4.10), antifeedants (Chapters 4.11–4.12), compounds employed in plant-plant and plant-microbe interactions (Chapter 4.13), plant-insect interactions (Chapter 4.14) and microbe-microbe interactions (Chapter 4.07). Hormonesofplants(Chapter4.02)andinsects(Chapter4.03)arealsotreatedinthisvolume.Auniqueattempt inthepresentvolumeistoregardflavorandfragrance(Chapter4.15)andtaste (Chapter4.16)asphenomenaof human–environmentalinteractionsorhumanchemicalecology. Consequently,allorganismsincludinghumanswillbetreatedinthelightofbioactivenaturalproducts.Inother words,bioactivenaturalproductsrelatedtobiologicalindustriesincludingagriculture,forestry,fishery,foodindustry, cosmeticsandpersonalcare,andfermentationindustrieswillbetreatedinthisvolume.Thetreatise,however,willbe basictoincludechemistryinallaspectsofchemicalecology.ManyoftheapplicationsaretreatedinVolume3. Prior to delving into the details, this overview briefly summarizes the recent progress made as follows: (1) progress in structure elucidation, (2) complexity of the multicomponent pheromone, (3) stereochemical aspectsofchemicalecology,(4)dualrolesofsemiochemicalssuchaspheromonesandkairomones,and(5)new trendsinmammalianchemicalecology. Theauthororiginallyreviewedthreeimportantaspectsofsemiochemicalresearchthathasbeendiscussed in Volume 9. They are as follows: (1) determination of structure including the absolute configuration of bioactive natural products, (2) problems of biological homochirality, and (3) study of structure–activity relationshipstoinventmimicsofbioactivesmallmoleculessoastoutilizethemaspesticidesormedicinals. Bergstro¨m2,3 recently published two excellent reviews on the birth and growth of chemical ecology as an interdisciplinaryfield.Thesetworeviewsarerecommendedforthosewhowishtoknowthehistoryofchemical ecologyoverthepast50years. 4.01.2 Comments on Progress in the Chemistry and Biology of Semiochemicals 4.01.2.1 ProgressinStructureElucidation Progressinmicroanalyticalmethodscontinuouslyimprovestheabilityofchemiststoclarifythestructuresof new semiochemicals. In 2002, a new and revolutionary strategy in the structure determination of a biofunc- tional and small molecule was reported by Hughson and coworkers.4 It was to determine the structure of a 1 2 OverviewandIntroduction Figure1 Structuresofbioregulatorsofmicrobialorplantorigins. biofunctionalmoleculeevenwithoutisolatingthecompounditself.Autoinducer-2(AI-2)isauniversalsignal forinterspeciescommunication(quorumsensing)inbacteria,whichallowsthemtocoordinategeneexpression. The structure of AI-2 remained elusive until 2002, when the X-ray crystallographic analysis of AI-2 sensor protein(LuxPfrombioluminescentmarinebacteriumVibrioharveyi)inacomplexwithAI-2wassuccessfully carried out.4 LuxP is the primary AI-2 receptor, and recombinant LuxP was overproduced in Escherichia coli strainBL21.EightmilligramsofLuxP-AI-2complexwasnecessaryfortheX-raywork.AsshowninFigure1, the bound ligand AI-2 was a furanosyl borate diester 1. The fact that the ligand contains boron could be confirmedby11B-NMR(nuclearmagneticresonance)analysisofLuxP–AI-2complex. This work demonstrates that we can determine the structure of a biofunctional molecule by isolating its complex with a receptor protein, and analyzing the structure of the complex by X-ray. In case a receptor protein is available in a sufficient amount by recombinant technology to make the complex crystalline, Hughson’sstrategywillbetheidealwaytoelucidatethestructureofascarceandelusivebiofunctionalligand. Inthepast,isolationofabioactivebutscarceligandanditsstructureelucidationwasaprerequisite,whichthen enabledthedetectionandisolationofitsreceptorprotein.InHughson’sstrategy,thereceptorproteinwasthe first target, and subsequently, the structure of its ligand was clarified. This is indeed a new method – the so-called‘reversednaturalproductschemistry.’ Thesecondexampleofthestructureelucidationofanewsemiochemicalfollowedthetraditionalway,but on a very small scale to isolate 18mg of target molecule 2, a factor inducing hyphal branching in arbuscular mycorrhizal fungus Gigaspora margarita.5 Arbuscular mycorrhizal fungi form symbiotic associations with the rootsofmore than80%ofland plants.Hostroots release asemiochemical that triggers hyphalbranching.In 2005,Akiyamaetal.5isolated5-deoxystrigol2(18mg)fromtherootexudatesofLotusjaponica,anddetermined its structure by spectral [UV (ultraviolet), IR (infrared), 1H-NMR, EI-MS (mass spectrometry), and CD (circular dichroism)] analysis and synthesis of ((cid:2))-2. They used activated charcoal to recover 2 from the hydroponicsolutionofL.japonica.5-Deoxystrigol2elicitedhyphalbranchingofG.margaritaatconcentrations rangingfrom1ngto1pgperdisc.Arelatedcompoundstrigol3hadbeenknownsince1966asagermination stimulantfortheparasiticwitchweed,Strigalutea. Through Akiyama’s work, strigolactones such as 2 and 3 were shown to be bioactive in two different phenomenaintheplantkingdom,germinationofparasiticweedsandhyphalbranchinginarbuscularmycor- rhizalfungi.Perhaps,theparasiticweedsusedtheplant’ssignalsforsymbiosiswithfungitofindouttheirhosts forparasitism. 4.01.2.2 ComplexityoftheMulticomponentPheromone In1959whenthefirstpheromonebombykol[(10E,12Z)-10,12-hexadecadien-1-ol]wasidentifiedasthefemale- producedsex attractantofthesilkwormmoth Bombyxmori,thepheromonalactivitywasthought tobetotally due to that single compound.6 At present, it is generally believed that a pheromone is composed of many pheromone components (see Chapter 4.04), which resembles the present concept in flavor and fragrance chemistry, that is, to consider a mixture as a whole to be responsible for a particular sense of smell (see Chapter4.15). Recently in 2008, Lacey et al.7 reported a typical example showing the complexity of a multicomponent pheromone.Amale-producedaggregationpheromoneofthecerambycidbeetleMegacyllenecaryaecontainedas OverviewandIntroduction 3 Figure2 Componentsofthemale-producedaggregationpheromoneofthecerambycidbeetleMegacyllenecaryae. Percentcompositionsareindicatedwithinparentheses. many as eight male-specific compounds as shown in Figure 2. They are (2R,3S)-2,3-hexanediol 4, its enantiomer (2S,3R)-2,3-hexanediol 4, (S)-limonene 5, 2-phenylethanol 6, (S)-(cid:2)-terpineol 7, nerol 8, neral 9, andgeranial10.7Noneofthesecompoundswasattractiveasasinglecomponent.BothsexesofM.caryaewere attractedtothecompleteblendoftheseeightcompounds,buttheeliminationofanyoneofthemresultedina decreased trap capture. Blends that were missing such as (2S,3R)-4, (2R,3S)-4, or a mixture of 9 and 10 (1:1) werepheromonallyinactive.Modernstudiesonsemiochemicalsrevealedtheimportanceofapropermixture toevokeabiologicalreaction. 4.01.2.3 ProgressinUnravelingtheStereochemicalAspectsofChemicalEcology The author’s overview in Volume 8 of CONAP (first edition) briefly treated the relationship between stereochemistry and pheromone activity among insects.1 The significance of chirality in pheromone science wasalsodiscussedindepthbytheauthorin2007.8Furtherexampleswerereportedtoshowtheimportanceof chiralityinchemicalcommunicationsamongmicroorganisms9,10andmammals.11Themicrobialcaseswillbe summarizedinthissection. Fungi in the genus Phytophthora are destructive phytopathogens, and caused the well-known Irish potato faminein1840s.Afactorknownashormone(cid:2)1issecretedbytheA1matingtypeofPhytophthoranicotianae,and inducestheformationofsexualsporesintheA2matingtype.Byisolating1.2mgofthehormone(cid:2)1from1830l ofculturebrothofP.nicotianae,itsstructurewasproposedas(15R)-11showninFigure3.Theconfigurationsat theotherthreestereogeniccentersremainedobscure.Interestingly,11induces sexualsporeformationinthe A2matingtypesofseveralotherspeciesinthegenusPhytophthora,andtherefore11isauniversalmatingsignal in the heterothallic species of Phytophthora. In order to determine the absolute configuration of hormone (cid:2)1, Yajimaetal.9synthesizedandbioassayedvariousstereoisomersof11.Theonlybioactivestereoisomeratadose of10ngwas(3R,7R,11R,15R)-11,whichmustthereforebethenaturalhormone(cid:2)1. 4 OverviewandIntroduction Figure3 Structuresofmicrobialsemiochemicals. N-Acyl homoserine lactones (AHLs) are important pheromones controlling quorum sensing among Gram-negativebacteria.AnAHLcalledsmallbacteriocinpossessesthestructure(2S,39R,79Z)-12asshownin Figure3,andisthequorum-sensingpheromoneofanitrogenfixerRhizobiumleguminosarumlivinginsymbiosis with leguminous plants. Yajima’s synthesis of 12 and its stereoisomers enabled the examination of the stereochemistry–bioactivityrelationshipsinthecaseofsmallbacteriocin.10Thenatural(2S,39R,79Z)-12exhib- ited the greatest bioactivity, whereas the other three stereoisomers showed 5–500 times weaker bioactivity. Chiralitywasshowntobealsoimportantforchemicalcommunicationsamongbacteria. 4.01.2.4 DualRolesofSemiochemicalsasPheromonesandKairomones Ithasbeenbelievedthatpheromonesactonlyaspheromonesofacertainspecies.Recentstudieshaverevealed thatpheromonesactalsoaskairomonesforthepredatorsagainstthepheromonereleasers.Twoexamplesare givenbelow. ThescarabbeetleOsmodermaeremitaanditslarvalpredator,theclickbeetleElaterferrugineus,areknownas indicators of the species richness of insect fauna of hollow deciduous trees in Northern Europe. (R)-4- Decanolide 13 (Figure 4) is the male-produced sex pheromone of O. eremita.12 Lactone 13 is also employed byE.ferrugineusasakairomoneforthedetectionoftreehollowscontainingthelarvaeofO.eremita.12 Dunkelblum and coworkers,13,14 in association with the author’s group, studied both the pheromonal and kairomonal activities of three female-produced sex pheromones 14–16 of the pine bast scales of Matsucoccus speciestogetherwiththeiranalogues17and18.TheIsraelipinebastscale,M.josephi,employs(2E,5R,6E,8E)- 14 as its sex pheromone, whereas (3S,7R,8E,10E)-15 is used by M. feytaudi and (2E,4E,6R,10R)-16 by M. matsumurae. The pheromone 14 was found to be a potent kairomone for Elatophilus hebraicus adults, the Figure4 Structuresofinsectpheromonesandtheirmimicstoillustratethepheromone–kairomonerelationship. OverviewandIntroduction 5 majorpredatorybugagainstM.josephi.Strangelyenough,theIsraelipredatorE.hebraicuswasalsoattractedby 15and16,althoughbothM.feytaudiandM.matsumuraeareabsentinIsrael.Itseemsasifthepresenceofthe dienemoietyof14–16issufficienttoattracttheadultE.hebraicus.Thekairomonalactivityof14–16isageneral phenomenon,andM.feytaudipheromoneattractspredatorssuchasElatophiluscrassicornisandHemerobiusstigma inPortugalandE.nigricornisandH.stigmainItalyandFrance. The pheromone analogues 17 and 18 showed interesting biological properties. The nor-analogue 17 of M.josephipheromone14preservedthepheromonalactivitybuteliminateditskairomonalactivity.13Similarly, theremovaloftheterminalmethylgroupfromthedienemoietyof15,producingthenor-analogue18,again preserveditspheromonalactivitybuteliminatedthekairomonalactivity.14Thus,subtleanddesignedaltera- tions in the structure of the diene system change the mode of the kairomonal activity markedly. The two mimics17and18maybeusefultocaptureonlythepestpinebastscaleswithoutdisturbingtheirpredators. 4.01.2.5 NewTrendsinMammalianChemicalEcology Asthescienceofinsectpheromoneshasfullydeveloped,studiesonthepheromonesofmammalsandaquatic organisms are now gaining popularity among scientists. Two examples involving acetal pheromones in mammals are discussed. As can be seen in the pheromone chapter of Francke and Schulz, acetals have been knownoriginallyasaggregationpheromonesofbarkbeetles(Chapter4.04). According to Rasmussen’s recent study, the male Asian elephants, Elephas maximus, release frontalin 19 (Figure5)fromthetemporalglandonthefaceduringmusth,whichisanannualperiodofsexualactivityand aggression.11Theratiooffrontalinenantiomersenablesotherelephantstodistinguishboththematurityofmale elephants in musth and the phase ofmusth.In young males, significantly more (1R,5S)-(þ)-frontalin 19than (1S,5R)-((cid:3))-frontalin19isreleased.Astheelephantreachesmaturity,theratiobecomesalmostequaltoemit ((cid:2))-frontalin.Musthperiodsgetlongerasmalesage.Secretionscontaininghighconcentrationoffrontalin19at racemicratiosattractedfollicular-phasefemales,whereasthesecretionsrepulsedmalesaswellaslutealphase andpregnantfemales.Theimportanceoftheenantiomericcompositionoffrontalin19inthebehaviorofAsian elephantswasobservedonlyaftertheadventofenantioselective(chiral)gaschromatography(GC).Itshouldbe notedthatbarkbeetlesemploy(1S,5R)-((cid:3))-frontalin19astheirpheromonecomponent. Genes in the major histocompatibility complex (MHC), known for their role in immune recognition and transplantationsuccess,areinvolvedinmodulatingmatechoiceinmiceandperhapsalsoinhumans.15Volatile bodyodorsofmiceareregulatedbyMHCgenes,anditistheseodordifferencesthatunderlinematechoiceand familialrecognition.Anindividual’solfactoryidentityiscodedinpartbyapatternofvolatilesemiochemicals, whichisregulatedbygenesinMHC.16Inthisconnection,theeffectsofmicepheromonecomponentsonthe attractivenessofamalemouseevolvedasaninterestingresearchtopic.Forthisstudy,previouslysynthesized micepheromonecomponents20and2117aswellasnewlysynthesizedones22and2318wereemployed. Inmanywildanimals,oldermalesareoftenpreferredbyfemales,becausetheycarry‘good’genesthataccount for their viability. In the case of mice, Mus musculus, higher levels of (1R,5S,7R)-dehydro-exo-brevicomin 20 Figure5 StructuresofpheromonecomponentsofmaleAsianelephantsandmice. 6 OverviewandIntroduction (exo-brevicomin is a bark beetle pheromone) and (S)-2-sec-butyl-4,5-dihydrothiazole 21 and 2-isopropyl-4,5- dihydrothiazole22weredetectedintheurine of aged malemice than innormal adultmales, whereasalower levelof6-hydroxy-6-methyl-3-heptanone23wasobserved.19When20–22were addedtotheurine ofnormal adultmales,theirurineshowedanenhancedattractivenessagainstfemalemice.Theadditionof23hadnoeffect atall.Accordingly,itisestablishedinthecaseofmicethatsemiochemicalscontrolthemateselectionprocess.19A search to understand the role of semiochemicals in higher animals including humans will continue to be an interestingareaofchemicalecologywithpotentialimpactonperfumeindustries. 4.01.3 Future Perspectives in Chemical Ecology In order to preserve our global ecological system, we require an in-depth knowledge in chemical ecology to understandmoreabouttheroleofbioactivenaturalproductsintheenvironment.Thiswillenableustoresolve manyproblemsthatremainunraveled.Chemicalecologyisaninterdisciplinarysciencebetweenchemistryand biology.Noonecanbeanexpertinboththeareasunlessonewantstoremainsuperficial.Thus,thiscallsusto rememberthefollowingwordsoftheApostlePaul:‘‘Thepersonwhothinksheknowssomethingreallydoesnot knowasheoughttoknow(1Corinthians8:2).’’ThissentencewasalsocontainedinVolume9Chapter5. Acknowledgments IwishtothankDr.T.Tashiroforhishelp. Glossary kairomone Akairomoneisachemicalsubstanceproducedandreleasedbyalivingorganismthatbenefitsthe receiveranddisadvantagesthedonor.Thekairomoneimprovesthefitnessoftherecipientandinthisrespect differsfromanallomone. References 1. K. Mori, Ed., Comprehensive Natural Products Chemistry, Vol. 8: Miscellaneous Natural Products including Marine Natural Products,Pheromones,PlantHormones,andAspectofEcology,Elsevier:Oxford,1999;pp1–749. 2. G.Bergstro¨m,PureAppl.Chem.2007,79,2305–2323. 3. L.G.W.Bergstro¨m,Chem.Commun.2008,3959–3979. 4. X.Cheng;S.Schauder;N.Potier;A.VanDorsselaer;I.Pelczer;B.L.Bassler;F.M.Hughson,Nature2002,415,545–549. 5. K.Akiyama;K.Matsuzaki;H.Hayashi,Nature2005,435,824–827. 6. A.Butenandt;R.Beckmann;D.Stamm;E.Hecker,Z.Naturforsch.1959,14b,283–284. 7. E.S.Lacey;J.A.Moreira;J.G.Millar;L.M.Hanks,J.Chem.Ecol.2008,34,408–417. 8. K.Mori,Bioorg.Med.Chem.2007,15,7505–7523. 9. A.Yajima;Y.Qin;X.Zhou;N.Kawanishi;X.Xiao;J.Wang;D.Zhang;Y.Wu;T.Nukada;G.Yabuta;J.Qi;T.Asano;Y.Sakagami, Nat.Chem.Biol.2008,4,235–237. 10. A.Yajima;A.A.N.vanBrussel;J.Schripsema;T.Nukada;G.Yabuta,Org.Lett.2008,10,2047–2050. 11. D.R.Greenwood;D.Comeskey;M.B.Hunt;L.E.L.Rasmussen,Nature2005,438,1097–1098. 12. G.P.Svensson;M.C.Larsson,J.Chem.Ecol.2008,34,189–197. 13. S.Kurosawa;M.Takenaka;E.Dunkelblum;Z.Mendel;K.Mori,ChemBioChem2000,1,56–66. 14. Z.Mendel;E.Dunkelblum;M.Branco;J.C.Franco;S.Kurosawa;K.Mori,Naturwissenschaften2003,90,313–317. 15. K.Yamazaki;G.K.Beauchamp,Adv.Genet.2007,59,129–145. 16. G.K.Beauchamp;K.Yamazaki,Biochem.Soc.Trans.2003,31(Part1),147–151. 17. T.Tashiro;K.Mori,Eur.J.Org.Chem.1999,2167–2173. 18. T.Tashiro;K.Osada;K.Mori,Biosci.Biotechnol.Biochem.2008,72,2398–2402. 19. K.Osada;T.Tashiro;K.Mori;H.Izumi,Chem.Senses2008,33,815–823. OverviewandIntroduction 7 BiographicalSketch KenjiMoriwasbornin1935andhasspentatotalof42yearsattheUniversityofTokyo.He obtained aB.Sc. degree in agricultural chemistry(1957), followed by an M.Sc.in biochem- istry(1959),andPh.D.inorganicchemistry(1962).Hewasthenappointedassistant(1962), associate professor (1968), and served as a professor of organic chemistry (1978) at the UniversityofTokyountil1995.Heisnowprofessoremeritus.Dr.Moriworkedfor7years (1995–2001) as aprofessor at the Science University of Tokyo. At present, he is a research consultantatRIKEN(InstituteofPhysicalandChemicalResearch)andatToyoGoseiCo., Ltd.HewasawardedtheJapanAcademyPrize(1981),theSilverMedaloftheInternational Society of Chemical Ecology (1996), the American Chemical Society’s Ernest Guenther Award in the Chemistry of Natural Products (1999), the Special Prize of the Society of SyntheticOrganicChemistry,Japan(2003),andtheFrantisekSormMemorialMedalofthe AcademyoftheCzechRepublic(2003). 4.02 Plant Hormones IsomaroYamaguchi,MaebashiInstituteofTechnology,Gunma,Japan JerryD.CohenandAngelaH.Culler,UniversityofMinnesota,Minneapolis,USA MarcelQuint,LeibnizInstituteofPlantBiochemistry,Halle,Germany JanetP.Slovin,UnitedStatesDepartmentofAgriculture,Washington,DC,USA MasatoshiNakajima,TheUniversityofTokyo,Tokyo,Japan ShinjiroYamaguchi,HitoshiSakakibara,andTakeshiKuroha,RIKENPlantScienceCenter, Kanagawa,Japan NobuhiroHirai,KyotoUniversity,Kyoto,Japan TakaoYokota,TeikyoUniversity,Utsunomiya,Japan HiroyukiOhtaandYuichiKobayashi,TokyoInstituteofTechnology,Tokyo,Japan HitoshiMoriandYojiSakagami,NagoyaUniversity,Nagoya,Japan ª2010ElsevierLtd.Allrightsreserved. 4.02.1 Introduction 12 4.02.2 Auxins 13 4.02.2.1 Introduction 13 4.02.2.2 Chemistry 14 4.02.2.2.1 IAAconjugatesinplants 14 4.02.2.2.2 IAApeptideconjugates 14 4.02.2.2.3 Aminoacidconjugates 14 4.02.2.2.4 Amideconjugatehydrolysis 15 4.02.2.2.5 Esterconjugates 15 4.02.2.3 BiosynthesisandMetabolism 16 4.02.2.3.1 Tryptophan-independentbiosynthesis 17 4.02.2.3.2 Tryptophan-dependentpathways 17 4.02.2.3.3 IAAdegradation 22 4.02.2.4 PerceptionandSignaling 22 4.02.2.4.1 Transcriptionalresponsestoauxinstimuli 22 4.02.2.4.2 Regulationofauxinresponsebytheubiquitinpathway 24 4.02.2.4.3 Auxinreceptors 24 4.02.3 Gibberellins 24 4.02.3.1 Introduction 24 4.02.3.2 Chemistry 25 4.02.3.2.1 Fungalgibberellins 25 4.02.3.2.2 Plantgibberellins 26 4.02.3.2.3 Isolationandcharacterization 26 4.02.3.2.4 Qualitativeandquantitativeanalysis 27 4.02.3.3 BiosynthesisandMetabolism 27 4.02.3.3.1 Biosynthesisinplants 27 4.02.3.3.2 Deactivationinplants 30 4.02.3.3.3 Regulationofgibberellinlevelsinplants 30 4.02.3.3.4 Biosynthesisinfungi 31 4.02.3.4 BiologicalActivities 32 4.02.3.4.1 Effectsonshootelongation 32 4.02.3.4.2 Effectsonenzymeactivitiesandinductions 33 4.02.3.4.3 Effectsonflowering 33 4.02.3.4.4 Othereffects 33 9 10 PlantHormones 4.02.3.5 PerceptionandSignaling 34 4.02.3.5.1 OverviewofGAsignalinginplants 34 4.02.3.5.2 GID1,thecytosolicgibberellinreceptor 34 4.02.3.5.3 DELLAprotein,akeyregulatorofGAsignaling 36 4.02.3.5.4 F-boxprotein,recruiterofDELLAforitsdegradation 37 4.02.4 Cytokinins 37 4.02.4.1 Introduction 37 4.02.4.2 Chemistry 37 4.02.4.2.1 Structures 37 4.02.4.3 BiosynthesisandMetabolism 40 4.02.4.3.1 Twopathwaysforisoprenoidcytokininbiosynthesis 40 4.02.4.3.2 Cytokininbiosynthesisinmicroorganisms 40 4.02.4.3.3 Cytokininbiosynthesisinhigherplants 40 4.02.4.3.4 CytokininproductionbydegradationoftRNA 42 4.02.4.3.5 IPTinPhyscomitrellapatens 42 4.02.4.3.6 Metabolicoriginsofisoprenoidsidechains 42 4.02.4.3.7 Activationstepofcytokininbiosynthesis 42 4.02.4.3.8 Modificationofisoprenoidsidechain 43 4.02.4.3.9 Modificationofadeninemoiety 46 4.02.4.3.10 Degradationofcytokinins 46 4.02.4.4 Translocation 47 4.02.4.5 BiologicalActivities 48 4.02.4.5.1 Delayofleafsenescence 48 4.02.4.5.2 Controlofthecellcycle 48 4.02.4.5.3 Controlofshootmeristemactivity 48 4.02.4.5.4 Controlofrootmeristemactivity 49 4.02.4.5.5 Regulationofvasculardevelopment 49 4.02.4.5.6 Releaseofbudsfromapicaldominance 49 4.02.4.5.7 Regulationofrootformation 49 4.02.4.5.8 Regulationofnoduleformation 50 4.02.4.5.9 Interactionsbetweenmacronutrientsandcytokinins 50 4.02.4.6 PerceptionandSignaling 51 4.02.4.6.1 Cytokinin-bindingproteins 51 4.02.4.6.2 Cytokininreceptorasahistidineproteinkinase(His-kinase) 51 4.02.4.6.3 Phosphotransferproteins 52 4.02.4.6.4 Responseregulators 53 4.02.4.6.5 Branchofthetwo-componentpathway 53 4.02.5 AbscisicAcid 53 4.02.5.1 Introduction 53 4.02.5.2 Chemistry 54 4.02.5.2.1 Isolationandanalysis 54 4.02.5.2.2 Physicochemicalproperties 55 4.02.5.2.3 Structure–activityrelationship 58 4.02.5.3 BiosynthesisandMetabolism 60 4.02.5.3.1 Biosynthesisinplants 60 4.02.5.3.2 Biosynthesisinfungi 62 4.02.5.3.3 Metabolism 63 4.02.5.4 BiologicalActivities 65 4.02.5.4.1 Stomatalclosure 65 4.02.5.4.2 Inhibitionofseedgerminationandotheractivities 66 4.02.5.4.3 ReceptorsofABAandABA-relatedgenesandproteins 66 PlantHormones 11 4.02.6 Brassinosteroids 67 4.02.6.1 Introduction 67 4.02.6.2 Chemistry 68 4.02.6.2.1 Distribution 68 4.02.6.2.2 Structure 68 4.02.6.2.3 Analysis 68 4.02.6.2.4 Synthesis 70 4.02.6.2.5 Structure–activityrelationship 70 4.02.6.3 BiosynthesisandMetabolism 72 4.02.6.3.1 Biosynthesisofcastasterone 72 4.02.6.3.2 Biosynthesisofbrassinolidefromcastasterone 75 4.02.6.3.3 Regulationofbiosynthesis 75 4.02.6.3.4 Metabolismanditsregulation 75 4.02.6.4 PhysiologyandSignalTransduction 75 4.02.6.4.1 Physiology 75 4.02.6.4.2 Signaltransduction 76 4.02.7 JasmonatesandOxylipins 77 4.02.7.1 Introduction 77 4.02.7.2 Chemistry 78 4.02.7.2.1 Chemicalstructure 78 4.02.7.2.2 Chemicalstability 79 4.02.7.2.3 Chemicalsynthesisofthemetabolitesonthelinolenicacidcascade 79 4.02.7.3 BiosynthesisandMetabolism 83 4.02.7.3.1 Biosyntheticpathwayinplants 83 4.02.7.3.2 Lipid-derivedreactiveelectrophilespeciesandnonenzymaticallyformedoxylipins 84 4.02.7.4 Physiology 84 4.02.7.4.1 Responsestobioticandabioticstresses 84 4.02.7.4.2 Stressresponseintheabsenceofjasmonicacid 85 4.02.7.4.3 Effectofjasmonatesondevelopmentalprocesses 85 4.02.7.4.4 OPDAondevelopmentalprocesses 86 4.02.7.5 Signaling 86 4.02.8 Ethylene 87 4.02.8.1 Introduction 87 4.02.8.2 Chemistry 87 4.02.8.3 Biosynthesis 87 4.02.8.3.1 TranscriptionalregulationofACCsynthase 88 4.02.8.3.2 PosttranslationalregulationofACCsynthase 88 4.02.8.4 PerceptionandSignaling 89 4.02.8.4.1 Ethylenereceptors 89 4.02.8.4.2 RTE1/GR 90 4.02.8.4.3 CTR1 90 4.02.8.4.4 EIN2 90 4.02.8.4.5 EIN3 90 4.02.9 PeptideHormonesinPlants 91 4.02.9.1 Introduction 91 4.02.9.2 Systemins 91 4.02.9.3 AtPep1 92 4.02.9.4 Phytosulfokine 93 4.02.9.5 RegulatoryFactorsforSelf-Incompatibility 94 4.02.9.6 MCLV3andCLEPeptides 94 4.02.9.7 OtherPeptides 95 4.02.9.8 Remarks 95