ebook img

Comprehensive Mathematics for Computer Scientists 2: Calculus and ODEs, Splines, Probability, Fourier and Wavelet Theory, Fractals and Neural Networks, Categories and Lambda Calculus (v. 2) PDF

365 Pages·2006·3.51 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comprehensive Mathematics for Computer Scientists 2: Calculus and ODEs, Splines, Probability, Fourier and Wavelet Theory, Fractals and Neural Networks, Categories and Lambda Calculus (v. 2)

· Guerino Mazzola Gérard Milmeister Jody Weissmann Comprehensive Mathematics for Computer Scientists 2 Calculus and ODEs, Splines, Probability, Fourier and Wavelet Theory, Fractals and Neural Networks, Categories and Lambda Calculus With 114 Figures 123 GuerinoMazzola GérardMilmeister JodyWeissmann DepartmentofInformatics UniversityofZurich Winterthurerstr.190 8057Zurich,Switzerland ThetexthasbeencreatedusingLATEX2ε.Thegraphicsweredrawnusingtheopen sourceillustratingsoftwareDiaandInkscape,withalittlehelpfromMathematica. ThemaintexthasbeensetintheY&YLucidaBrighttypefamily,theheadingin BitstreamZapfHumanist601. LibraryofCongressControlNumber:2004102307 MathematicsSubjectClassification(1998):00A06 ISBN3-540-20861-5SpringerBerlinHeidelbergNewYork Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmorinanyotherway,andstorageindata banks.Duplicationofthispublicationorpartsthereofispermittedonlyundertheprovisions oftheGermanCopyrightLawofSeptember9,1965,initscurrentversion,andpermission forusemustalwaysbeobtainedfromSpringer.Violationsareliableforprosecutionunder theGermanCopyrightLaw. SpringerisapartofSpringerScience+BusinessMedia springeronline.com ©Springer-VerlagBerlinHeidelberg2005 PrintedinGermany Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Coverdesign:ErichKirchner,Heidelberg Typesetting:Camerareadybytheauthors Production:LE-TEXJelonek,Schmidt&V¨ocklerGbR,Leipzig Printedonacid-freepaper 40/3142YL-543210 Preface Thissecondvolumeofacomprehensivetourthroughmathematicalcore subjects for computer scientists completes the first volume in two re- gards: Part III first adds topology, differential, and integral calculus to the top- ics of sets, graphs, algebra, formal logic, machines, and linear geometry, of volume 1. With this spectrum of fundamentals in mathematical edu- cation, young professionals should be able to successfully attack more involvedsubjects,whichmayberelevanttothecomputationalsciences. Inasecondregard,theendofpartIIIandpartIVaddaselectionofmore advanced topics. In view of the overwhelming variety of mathematical approaches in the computational sciences, any selection, even the most empirical, requires a methodological justification. Our primary criterion has been the search for harmonization and optimization of thematic di- versityandlogicalcoherence.Thisiswhywehave,forinstance,bundled suchseeminglydistantsubjectsasrecursiveconstructions,ordinarydif- ferential equations, and fractals under the unifying perspective of con- tractiontheory. For the same reason, the entry point to part IV is category theory. The reader will recognize that a huge number of classical results presented in volume 1 are perfect illustrations of the categorical point of view, which will definitely dominate the language of mathematics and theo- retical computer science of the decades to come. Categories are advan- tageous or even mandatory for a thorough understandingof higher sub- jects, such as splines, fractals, neural networks, and λ-calculus. Even for the specialist, our presentationmay here and there offer a fresh view on classicalsubjects.Forexample,thesystematicusageofcategoricallimits VI Preface inneuralnetworkshasenabledanoriginalformalrestatementofHebbian learning,perceptronconvergence,andtheback-propagationalgorithm. However, a secondary, but no less relevant selection criterion has been applied. It concerns the delimitation from subjects which may be very important for certain computational sciences, but which seem to be nei- thermathematicallynorconceptuallyofgerminalpower.Inthisspirit,we havealsorefrainedfromwritingapropercourseintheoreticalcomputer science or in statistics. Such an enterprise would anyway have exceeded by far the volume of such a work and should be the subject of a specific educationincomputerscienceorappliedmathematics.Nonetheless,the readerwillfindsomeinterfacestothesetopicsnotonlyinvolume1,but alsoinvolume2,e.g.,inthechaptersonprobabilitytheory,insplinethe- ory, and in the final chapter on λ-calculus, which also relates to partial recursivefunctionsandtoλ-calculusasaprogramminglanguage. We should not conclude this preface without recalling the insight that there is no valid science without a thorough mathematical culture. One ofthemostintriguingillustrationsofthisuniversal,butoftensurprising presence of mathematics is the theory of Lie derivatives and Lie brack- ets, which the beginner might reject as “abstract nonsense”: It turns out (using the main theorem of ordinary differential equations) that the Lie bracketoftwovectorfieldsisdirectlyresponsibleforthecontrolofcom- plex robot motion, or, still more down to earth: to everyday’s sideward parkingproblem.Wewishthatthereadermayalwayskeepinmindthese universal tools of thought while guiding the universal machine, which is thecomputer,tointelligentandsuccessfulapplications. Zurich, GuerinoMazzola August2004 GérardMilmeister JodyWeissmann Contents III Topology and Calculus 1 27 LimitsandTopology 3 27.1Introduction............................................. 3 27.2TopologiesonRealVectorSpaces........................ 4 27.3Continuity............................................... 14 27.4Series ................................................... 21 27.5Euler’sFormulaforPolyhedraandKuratowski’sTheorem 30 28 Differentiability 37 28.1Introduction............................................. 37 28.2Differentiation .......................................... 39 28.3Taylor’sFormula ........................................ 53 29 InverseandImplicitFunctions 59 29.1Introduction............................................. 59 29.2TheInverseFunctionTheorem........................... 60 29.3TheImplicitFunctionTheorem .......................... 64 30 Integration 73 30.1Introduction............................................. 73 30.2PartitionsandtheIntegral ............................... 74 30.3MeasureandIntegrability................................ 81 31 TheFundamentalTheoremofCalculusandFubini’sTheorem 87 31.1Introduction............................................. 87 31.2TheFundamentalTheoremofCalculus .................. 88 31.3Fubini’sTheoremonIteratedIntegration................. 92 32 VectorFields 97 32.1Introduction............................................. 97 32.2VectorFields ............................................ 98 VIII Contents 33 Fixpoints 105 33.1Introduction............................................. 105 33.2Contractions ............................................ 105 34 MainTheoremofODEs 113 34.1Introduction............................................. 113 34.2ConservativeandTime-DependentOrdinary DifferentialEquations:TheLocalSetup .................. 114 34.3TheFundamentalTheorem:LocalVersion................ 115 34.4TheSpecialCaseofaLinearODE ........................ 117 34.5TheFundamentalTheorem:GlobalVersion .............. 119 35 ThirdAdvancedTopic 125 35.1Introduction............................................. 125 35.2NumericsofODEs....................................... 125 35.3TheEulerMethod ....................................... 129 35.4Runge-KuttaMethods.................................... 131 IV Selected Higher Subjects 137 36 Categories 139 36.1Introduction............................................. 139 36.2WhatCategoriesAre..................................... 140 36.3Examples................................................ 143 36.4FunctorsandNaturalTransformations................... 147 36.5LimitsandColimits...................................... 153 36.6Adjunction.............................................. 159 37 Splines 161 37.1Introduction............................................. 161 37.2PreliminariesonSimplexes .............................. 161 37.3WhatareSplines?........................................ 164 37.4LagrangeInterpolation .................................. 168 37.5BézierCurves ........................................... 171 37.6TensorProductSplines .................................. 176 37.7B-Splines ................................................ 179 38 FourierTheory 183 38.1Introduction............................................. 183 38.2SpacesofPeriodicFunctions............................. 185 38.3Orthogonality ........................................... 188 Contents IX 38.4Fourier’sTheorem....................................... 191 38.5RestatementinTermsoftheSineandCosineFunctions.. 194 38.6FiniteFourierSeriesandFastFourierTransform ......... 200 38.7FastFourierTransform(FFT) ............................ 204 38.8TheFourierTransform .................................. 209 39 Wavelets 215 39.1Introduction............................................. 215 39.2TheHilbertSpaceL2(R) ................................. 217 39.3FramesandOrthonormalWaveletBases ................. 221 39.4TheFastHaarWaveletTransform........................ 225 40 Fractals 231 40.1Introduction............................................. 231 40.2Hausdorff-MetricSpaces................................. 232 40.3ContractionsonHausdorff-MetricSpaces ................ 236 40.4FractalDimension ....................................... 242 41 NeuralNetworks 253 41.1Introduction............................................. 253 41.2FormalNeurons ......................................... 254 41.3NeuralNetworks ........................................ 264 41.4Multi-LayeredPerceptrons ............................... 269 41.5TheBack-PropagationAlgorithm......................... 272 42 ProbabilityTheory 279 42.1Introduction............................................. 279 42.2EventSpacesandRandomVariables ..................... 279 42.3ProbabilitySpaces ....................................... 283 42.4DistributionFunctions................................... 290 42.5ExpectationandVariance................................ 299 42.6IndependenceandtheCentralLimitTheorem............ 306 42.7ARemarkonInferentialStatistics ....................... 310 43 LambdaCalculus 313 43.1Introduction............................................. 313 43.2TheLambdaLanguage................................... 314 43.3Substitution............................................. 316 43.4Alpha-Equivalence....................................... 318 43.5Beta-Reduction .......................................... 320 43.6Theλ-CalculusasaProgrammingLanguage.............. 326 X Contents 43.7RecursiveFunctions ..................................... 328 43.8RepresentationofPartialRecursiveFunctions............ 331 A FurtherReading 335 B Bibliography 337 Index 341

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.