Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Comprehensive Energy Systems, vol.1a - Energy Fundamentals

1.1 Energy Units, Conversions, and Dimensional Analysis İlhamiYıldız andYuLiu, Dalhousie University, Halifax, NS,Canada r2018ElsevierInc.Allrightsreserved. 1.1.1 Introduction 2 1.1.2 Quantities 2 1.1.2.1 Relationship BetweenQuantities 3 1.1.2.2 Base Quantities 3 1.1.2.3 Derived Quantities 3 1.1.2.4 Multiples andSubmultiples ofQuantities 3 1.1.2.5 Typesof Quantity Equations 4 1.1.3 Dimensional Analysis 4 1.1.4 UnitsandConversions 4 1.1.4.1 Useful Units inElectricity 6 1.1.4.1.1 Coulomb 6 1.1.4.1.2 Volt 6 1.1.4.1.3 Watt 6 1.1.4.1.4 Ohm 6 1.1.5 Rulesfor UsingSI Units 6 1.1.5.1 Capitalization 6 1.1.5.2 Use ofPlurals 6 1.1.5.3 Use ofHyphenation andSpace 9 1.1.5.4 Use ofNumerals andPeriods 9 1.1.5.5 Use ofSymbols for Mathematical Operations 9 1.1.6 OverallExamples 10 1.1.7 ConcludingRemarks 22 References 22 RelevantWebsites 23 Nomenclature J Unitofenergyandwork,joule a Atto k Kilo a Index;acceleration,ms(cid:1)2;constant,2897mmK k Dimensionlesscoefficient,thermal A Unitofelectriccurrent,ampere;area,m2 conductivity,Wm(cid:1)1K(cid:1)1orBtuh(cid:1)1ft(cid:1)11F(cid:1)1 b Index kg Unitofmass,kg Btu Britishthermalunit kWh Unitofenergy,kilowatt-hour(¼3.6MJ) c Centi K Unitofthermodynamictemperature c Index;speedoflight,3(cid:3)108ms(cid:1)1 l Length,morft C Unitofelectriccharge,coulomb;Celsius L Length C Specificheat,Jkg(cid:1)1K(cid:1)1orBtulb (cid:1)11F(cid:1)1 m Milli m cd Luminousintensityunit m Unitoflength,m;mass,kgorlb m d Deci m_ Massflowrate,kgs(cid:1)1 da Deka M Mega;mass E Exa mol Unitofamountofsubstance,mol E Energy,JorBtuh(cid:1)1 n Nano f Femto N Unitofforce,newton F Fahrenheit p Pico F Force,Norlb p Pressure,Paorlb f f g Gravitationalacceleration,ms(cid:1)2 P Peta G Giga P Power,WorBtuh(cid:1)1 h Hecto Pa Unitofpressure,pascal h Height,m;pumphead,m;enthalpy,Jkg(cid:1)1, r Radius,m heattransfercoefficient,Wm(cid:1)2K(cid:1)1orBtuh(cid:1)1 R Thermalresistance,m2KW(cid:1)1orhft21FBtu(cid:1)1 ft(cid:1)21F(cid:1)1;Planck’sconstant,6.626(cid:3)10(cid:1)34Js rad Unitofplaneangle,radian hp UnitofpowerinI–P,horsepower s Entropy,Jg(cid:1)1orBtulb (cid:1)1 m I Radiantfluxdensity,Wm(cid:1)2orBtuh(cid:1)1ft(cid:1)2 sr Unitofsolidangle,steradian ComprehensiveEnergySystems,Volume1 doi:10.1016/B978-0-12-809597-3.00101-2 1 2 EnergyUnits, Conversions, andDimensional Analysis T Tera;time,s;temperature,1C,1F,K,orR w Width therm Unitofheatenergy,105.5MJor100,000Btu W Unitofpower,watt ton Refrigerationton,12,000Btuh(cid:1)1or3.52kW W Work U Thermaltransmittance,Wm(cid:1)2K(cid:1)1orBtuh(cid:1)1 x Distance,morft ft(cid:1)21F(cid:1)1 y Yocto V Unitofelectricpotential,potentialdifference, Y Yotta andelectromotiveforce,volt z Zepto V Volume,m3orft3 Z Zetta Greekletters n Kinematicviscosity,m2s(cid:1)1;specificvolume, D Difference m3kg(cid:1)1orft3lb (cid:1)1;frequency,cycles m F Pumppower,Worhp s(cid:1)1¼hertz¼Hz Z Conversionefficiency,% y Pumppower,Worhp l Wavelength,mm r Density,kgm(cid:1)3orlb ft(cid:1)3 m m Micro O Unitofelectricresistance,ohm m Dynamicviscosity,Pas Subscripts max Maximum bk Breakpower p Pump;constantpressure fl Fluidpower pe Potentialenergy ke Kineticenergy v Constantvolume Superscripts 0 Minute(angle) 1 Degree 00 Second(angle) 1.1.1 Introduction When dealing with engineering and scientific relationships, in order to appreciate the magnitudes of physical quantities, it is essential to have a solid grasp of units, and recognize two types of equations, namely, quantity equations and numerical equations.Bothtypesarefoundintextsandreferencebooks,andtheconceptofunitsandquantitiesisusefulinunderstanding theirrespectivefeatures.Inthischapter,wecoverthemainfeaturesofquantitiesandquantityequations,andprovidethemost importantunitsandconversionsrelatingtoenergy.Quantityequationsarealsocalledequationsbetweenquantities,orphysical equations.And,numericalequationsarealternativelycalledmeasureequations.Wealsointroducethetechniqueofdimensional analysis,whichisusedtoderivebasicphysicalrelationshipswithoutperformingafullanalysisofasystem. 1.1.2 Quantities In1954,the10thgeneralconferenceonweightsandmeasures(CGPM)decidedthataninternationalsystemshouldbederived from six base units to provide for the measurement of temperature and optical radiation in addition to mechanical and elec- tromagneticquantities.Sixbaseunitsrecommendedatthisconferencewerethemeter,kilogram,second,ampere,degreeKelvin (laterrenamedkelvin),andcandela.In1960,the11thCGPMnamedthesystemtheInternationalSystemofUnits,SIfromthe Frenchname,LeSystèmeInternationald'Unités[1].Later,theseventhbaseunit,themole,wasaddedin1971bythe14thCGPM [2].SIisthemodernformofthemetricsystem,andtodayisthemostwidelyusedmeasurementsystem. Therefore, the International System of Quantities (ISQ) is now a system based on seven base quantities: length, mass, time, thermodynamictemperature,electriccurrent,luminousintensity,andamountofsubstance.Otherquantities,suchasarea,pressure, and electrical resistance are all derived fromthese basequantities. The ISQ defines quantityasany physical propertythatcan be measuredwiththeSIunits[3].Aquantitymayalsobeaphysicalconstant,suchasthegasconstant,orthePlanck’sconstant.Several hundredquantitiesareemployedtodescribeandmeasurethephysicalworld,andafewofthesequantitiesarelistedbelow[4]: Length Viscosity Area Electromotiveforce Time Energy Luminance Entropy Mass Speed Angle Pressure Force Power Temperature Momentum Energy Units, Conversions, andDimensional Analysis 3 1.1.2.1 RelationshipBetweenQuantities Thestudyofphysicstoagreatextentcanbedefinedasthestudyofmathematicalrelationshipsamongvariousphysicalproperties. Physicalquantitiesaredefined,asabove,whenthesepropertiesallowareasonablemathematicaldescription.Therelationshipof allotherquantitiescanbeestablished interms ofafewbasequantities selectedproperly,eitherbydefinition,bygeometry,by physicallaw,orbyacombinationofthebasequantities. Forinstance,pressureisaquantitythatisrelated,bydefinition,toaquantityforcedividedbyaquantityarea.Area,onthe otherhand,isaquantityrelated,bygeometry,totheproductoftwoquantitiesoflength.Moreover,forceisaquantityrelated(by Newton’ssecondlaw)tothequantitymasstimesthequantityacceleration. Therelationshipsbetweenquantitiesareexpressedintheformofquantityequations.Wecanrelateevenanisolatedquantity, suchastemperaturetothequantitiespressure,volume,andmass.Wecanfurtherrelatethequantitieslengthandtimebyusingthe universalconstantandthespeedoflight.Therefore,ifwedefineourconceptscorrectly,wecanrelateanyquantitytoanyother quantity. Thus the equation area¼length(cid:3)width is a quantity equation, which states that the quantity (area of a rectangle) is equaltothequantity(length)timesthequantity(width). 1.1.2.2 BaseQuantities In order to reduce a set of quantity equations, we have to first establish a number of so-called base quantities. Hence, base quantitiesarecalledthebuildingblocksuponwhichwedeveloptheentirestructureandrelationshipsofthephysicalworld.As mentionedearlier,theinternationalsystemofunits,orSI,makesuseofsevenbasequantities:mass(kg),length(m),time(s), temperature(K),electriccurrent(A),luminousintensity(cd),andamountofsubstance(mol).Thenumberofbasequantities,as wellastheirchoice,isquiteanarbitrarychoice;but,generally,weselectquantitiesthatareeasytounderstandandfrequentlyused, andforwhichaccurateandmeasurablestandardscanbeestablished. 1.1.2.3 Derived Quantities As mentioned in the relationship section earlier, using the selected base quantities as building blocks, derived quantities are expressedasthosethatcanbedeductedbydefinition,geometry,orphysicallaw.Somederivedquantityexamplesarearea(equals theproductsoftwolengths),velocity(equalslength/time),andforce(equalsmass(cid:3)acceleration),pressure,power,etc.Wealso havewhatarecalledsupplementaryunits(asaclassofderivedunits),namely,theplaneangle(radian¼rad¼mm(cid:1)1)andsolid angle(steradian¼sr¼m2m(cid:1)2). 1.1.2.4 Multiples andSubmultiples of Quantities Notethat themagnitude ofaquantity canhave anextremely largerange.Inaneffort tohandlesuchalarge range,theSIunit systemgenerated20prefixesshowninTable1. Table1 MultiplesandsubmultiplesinSIunitsystem Prefix Symbol Multiplier Example Yotta Y 1024 5Ym¼5yottameters¼5(cid:3)1024m Zetta Z 1021 2Zm¼2zettameters¼2(cid:3)1021m Exa E 1018 7Em¼7exameters¼7(cid:3)1018m Peta P 1015 6PJ¼6petajoules¼6(cid:3)1015J Tera T 1012 5TW¼5terawatts¼5(cid:3)1012W Giga G 109 8GJ¼8gigajoules¼8(cid:3)109J Mega M 106 2MW¼2megawatts¼2(cid:3)106W Kilo k 103 3km¼3kilometers¼3(cid:3)103m Hecto h 100 6hL¼6hectoliters¼600L Deka da 10 2dam¼2decameters¼20m Deci d 10(cid:1)1 3dL¼3deciliters¼0.3L Centi c 10(cid:1)2 5cm¼5centimeters¼0.05m Milli m 10(cid:1)3 9mV¼9millivolts¼9(cid:3)10(cid:1)3V Micro m 10(cid:1)6 5mm¼5micrometers¼5(cid:3)10(cid:1)6m Nano n 10(cid:1)9 2ns¼2nanoseconds¼2(cid:3)10(cid:1)9s Pico p 10(cid:1)12 3pJ¼3picojoules¼3(cid:3)10(cid:1)12J Femto f 10(cid:1)15 6fm¼6femtometers¼6(cid:3)10(cid:1)15m Atto a 10(cid:1)18 5aJ¼5attojoules¼5(cid:3)10(cid:1)18J zepto z 10(cid:1)21 6zJ¼6zeptojoules¼6(cid:3)10(cid:1)21J yocto y 10(cid:1)24 8yJ¼8yoctojoules¼8(cid:3)10(cid:1)24J 4 EnergyUnits, Conversions, andDimensional Analysis 1.1.2.5 Typesof Quantity Equations Theenergyofwind,thepressureatthebottomofanairorwatercolumn,theweightofanobject,andtheviscosityofaliquidare allphysicalquantitiesofnature.And,whethertheyaremeasuredornot,thesequantitiesarealwaysthereinteractingwitheach other according to fundamental laws. Physicists often express these laws in terms of quantity equations because quantities conformtotheselaws.Quantityequationspossesstwoimportantfeatures:first,theyshowtherelationshipbetweenquantities, andsecond,theycanbeusedwithanysystemofunits. Therearethreebasictypesofquantityequations: 1. Quantityequationsdevelopedfromthelawsofnature;forinstance,Newton’ssecondlawofmotion F¼ma whereFisthemagnitudeoftheforce,misthemagnitudeofthemass,andaisthemagnitudeoftheacceleration. 2. Quantityequationsdevelopedfromgeometry;forinstance,areaofacircle A¼pr2 whereAisthemagnitudeofthearea,pisthecoefficientbasedonthegeometryofacircle,andristhemagnitudeoftheradius. 3. Quantityequationsdevelopedfromadefinition;forinstance,definitionofpressure p¼F=A wherepisthemagnitudeofthepressure,Fisthemagnitudeoftheforce,andAisthemagnitudeofthearea. Manyquantityequationscanbedevelopedasacombinationofthebasicquantityequationsgivenabove,andinallcases,we canuseanyunitswewanttodescribethemagnitudesoftherelevantphysicalquantities. 1.1.3 Dimensional Analysis Dimensionalanalysisisquiteausefulmethodforderivinganalgebraicrelationshipbetweendifferentphysicalquantities,which reliesongoodphysicalintuitioninchoosingthedifferentappropriatephysicalvariables.Theideabehindthisanalysisisthateach variableisexpressedintermsofitsfundamentalunitsofmassM,lengthL,andtimeT,etc.,raisedtosomearbitraryindexa,b,c, etc.Theseunknownindicesarethendeterminedbyequatingtheindicesoflikeunits[5].Onemightalsochooseforce,length,and massasthebasedimensions,withassociateddimensionsF,L,M,whichcorrespondstoadifferentbasis.Itmaysometimesbe usefultochooseoneoranotherextendedsetofdimensionalsymbols.Inelectromagnetism,forinstance,itmaybeadvantageous tousedimensionsofM,L,T,andQ,whereQisusedtorepresentthedimensionofelectriccharge.Anotherexampleisthat,for instance,inthermodynamics,thebasesetofdimensionsisoftenextendedtoincludeadimensionfortemperature,Y. Let’snowperformasimpledimensionalanalysistofindanexpressionforthehydrostaticpressureinafluid.Thehydrostatic pressureisdependentonthedensityr,thegravitationalaccelerationg,anddepthh.Now,let’sassumeageneralalgebraicequation intheformof r¼kragbhc wherekisacoefficient(dimensionless),anda,b,andcaretheindices(numbers)tobedetermined.Now,wecanreplaceeach symbolbyitsfundamentalphysicalunit,andhave (cid:1) (cid:3) (cid:1) (cid:3) M1L(cid:1)1T(cid:1)2¼ ML(cid:1)3 a LT(cid:1)2 bðLÞc or M1L(cid:1)1T(cid:1)2¼MaL(cid:1)3aþbþcT(cid:1)2b M,L,andTareallindependentquantities;therefore,wecanequatetheindicesonbothsides,andhavethefollowingequations 1¼a; (cid:1)1¼ (cid:1)3aþbþc; (cid:1)2¼ (cid:1)2b Then we can solve for and find that a¼b¼c¼1; consequently, the expression for hydrostatic pressure can be found asp¼krgh,wherethecoefficientkcannotbedeterminedfromdimensionalanalysisbecauseitisdimensionless. Moredimensionalanalysisexamplesareprovidedintheexamplessectionlater. 1.1.4 Units and Conversions Thissection,asmodifiedafterASHRAE[6,7],referencestheStandardforMetricPractice,ASTMStandardE380-84[8],asoneof the basic standards for SI usage [9–13]. Table 2 provides conversion factors rounded to three or four significant figures for conversionbetweenSIandI–P.AndTable3providesconversionfactorsfordifferentphysicalquantitiesrelatedtoenergyfurther. Energy Units, Conversions, andDimensional Analysis 5 Table2 SIenergyrelatedunitsandconversions Divide By Toobtain Divide By Toobtain ha 0.405 acre J 1.36 ft(cid:4)lb (work) f kPa 100 bar Jkg(cid:1)1 2.99 ft(cid:4)lb lb(cid:1)1(specificenergy) f L 159 barrel(42USgal,petroleum) W 0.0226 ft(cid:4)lb min(cid:1)1(power) f m3 0.159 L 3.79 gallon(US,231in3) kJ 1.055 Btu,IT m3 0.00379 gallon kJm(cid:1)3;JL(cid:1)1 37.3 Btuft(cid:1)3 mLs(cid:1)1 1.05 gph kJL(cid:1)1 0.279 Btugal(cid:1)1 Ls(cid:1)1 0.0631 gpm W(mK)(cid:1)1 1.731 Btufth(cid:1)1ft31F mLJ(cid:1)1 0.0179 gpmton(cid:1)1refrigeration Btuin(hft31F)(cid:1)1 g 0.0648 grain(1/7000lb) W(mK)(cid:1)1 0.144 (thermalconductivity,k) mgL(cid:1)1 17.1 grgal(cid:1)1 W(m1C)(cid:1)1 gkg(cid:1)1 0.143 grlb(cid:1)1 W 0.293 Btuh(cid:1)1 kW 9.81 horsepower(boiler) kJm(cid:1)3 11.4 Btuft(cid:1)2 kW 0.746 horsepower(550ft-lb s(cid:1)1) f GJ(ym2)(cid:1)1 0.0000114 Btu(yft2)(cid:1)1 mm 25.4a inch Toobtain by Multiply Toobtain by Multiply Wm(cid:1)2 3.15 Btu(hft2)(cid:1)1 kPa 3.38 inofmercury(60(cid:5)F) W(m2K)(cid:1)1 5.68 (overallheattransfercoef.,U) Pa 249 inofwater(60(cid:5)F) (thermalconductance,C) mmm(cid:1)1 0.833 in/100ft,thermalexpansion kJkg(cid:1)1 2.33 Btulb(cid:1)1 mNm 113 in(cid:4)lb (torqueormoment) f kJ(kgK)(cid:1)1 4.19 Btu(lb1F)(cid:1)1(specificheat,C) mm2 645 in2 kJ(kg1C)(cid:1)1 mL 16.4 in3(volume) m3 0.0352 bushel mLs(cid:1)1 0.273 in3min(cid:1)1(SCIM) J 4.19 calorie,gram mm3 16,400 in3(sectionmodulus) kJ 4.19 calorie,kilogram;kilocalorie mm4 416,000 in4(sectionmoment) mPa(cid:4)s 1.00a centipoise,viscosity,m ms(cid:1)1 0.278 kmh(cid:1)1 (absolute,dynamic) MJ 3.60a kWh mm2s(cid:1)1 1.00a centistokes,kinematicviscosity,n GJ(y(cid:4)m2)(cid:1)1 0.0388 kWh(yft2) Pa 0.100a dynecm(cid:1)2 JL(cid:1)1 2.12 kWh/100cfm W 44.0 EDRhotwater(150Btuh(cid:1)1) N 9.81 kilopond(kgforce) W 70.3 EDRstream(240Btuh(cid:1)1) kN 4.45 kip(1000lb) f COP 0.293 EER MPa 6.89 kipin(cid:1)2(ksi) m 0.3048a ft m3 0.001a liter mm 304.8a ft mPa 133 micronofmercury(60oF) ms(cid:1)1 0.00508 ftmin(cid:1)1,fpm km 1.61 mile ms(cid:1)1 0.3048a fts(cid:1)1,fps km 1.85 mile/nautical kPa 2.99 ftofwater kmh(cid:1)1 1.61 mph kPam(cid:1)1 0.0981 ftofwaterper100ftpipe ms(cid:1)1 0.44 mph m2 0.0929 ft2 kPa 0.100a millibar m2KW(cid:1)1 kPa 0.133 mmofmercury(601F) m21CW(cid:1)1 0.176 ft2h1FBtu(cid:1)1 Pa 9.80 mmofwater(601F) (thermalresistance,R) kPa 9.80 meterofwater mm2s(cid:1)1 92900 ft2s(cid:1)1,kinematicviscosity,n g 28.3 ounce(mass,avoirdupois) L 28.3 ft3 N 0.278 ounce(forceorthrust) m3 0.0283 ft3 mL 29.6 ounce(liquid,US) mLS(cid:1)1 7.78 ft3h(cid:1)1,cfh mN(cid:4)m 7.06 ounceinch(torqueormoment) 1. Ls(cid:1)1 0.472 ft3min(cid:1)1,cfm gL(cid:1)1 7.49 ounce(avoirdupois)pergallon Ls(cid:1)1 28.3 ft3s(cid:1)1,cfs ng(s(cid:4)m2(cid:4)Pa)(cid:1)1 57.4 perm(permeance) N(cid:4)m 1.36 ft(cid:4)lb (torqueormoment) ng(s(cid:4)m(cid:4)Pa)(cid:1)1 1.46 perminch(permeability) f mL 473 pint(liquid,US) kgm(cid:1)3 16.0 lbft(cid:1)3(density,r) pound kgm(cid:1)3 120 lbgallon(cid:1)1 kg 0.454 lb(mass) mgkg(cid:1)1 1.00a ppm(bymass) g 454 lb(mass) kPa 6.89 psi N 4.45 lb (forceorthrust) EJ 1.055 quad f kgm(cid:1)1 1.49 lbft(cid:1)1(uniformload) L 0.946 quart(liquidUS) mPas 0.413 lb (ft(cid:4)h)(cid:1)1viscosity m2 9.29 square(100sqft) m (absolute,dynamic,m) mL 15 tablespoon(approximately) mPas 1490 lb (ft(cid:4)s)(cid:1)1viscosity mL 5 teaspoon(approximately) f (absolute,dynamic,m) MJ 105.5 therm(US) gs(cid:1)1 0.126 lbh(cid:1)1 t(tonne);Mg 1.016 ton,long(2240lb) kgs(cid:1)1 0.00756 lbmin(cid:1)1 t(tonne);Mg 0.907 ton,short(2000lb) (Continued) 6 EnergyUnits, Conversions, andDimensional Analysis Table2 Continued Divide By Toobtain Divide By Toobtain kW 0.284 lbofsteamperhour@2121F kW 3.52 ton,refrigeration(12,000Btuh(cid:1)1) (1001C) Pa 133 torr(1mmHg@01C) Pa 47.9 lb ft(cid:1)2 Wm(cid:1)2 10.8 wattpersquarefoot f mPas 47900 lb(cid:4)sft(cid:1)2viscosity m 0.9144a yd f (absolute,dynamic,m) m2 0.836 yd2 kgm(cid:1)2 4.88 lbft(cid:1)2 m3 0.765 yd3 Toobtain by Multiply Toobtain by Multiply aConversionfactorisexact. Abbreviation:COP,coefficientofperformance;EDR,equivalentdirectradiation;EER,energyefficiencyratio;SCIM,standardcubicinchesperminute. 1.1.4.1 UsefulUnitsin Electricity 1.1.4.1.1 Coulomb Inanelectriccircuit,theunitofelectricchargeinSIisthecoulomb,andhasthesymbolC.Anampere,whichhasthesymbolofA, isdefinedastheamountofchargetransportedthroughanycross-sectionofaconductorinonesecondbyaconstantcurrentofone ampere,andisequivalenttotheamountofchargeonabout6,241,510,000,000,000,000electrons. 1.1.4.1.2 Volt Inanelectriccircuit,theunitofelectricpotential,potentialdifference,andelectromotiveforceinSIisthevoltandhasthesymbol V.Ifandwhenweconsiderourhousewiringasplumbing,voltscanthenbeconsideredasameasureofthewaterpressure.One volt is the potential difference between two points on a conductor when the current flowing is one ampere and the power dissipatedbetweenthepointsisonewatt. Thevoltisaderivedunit,andintermsofbaseunitsitcanbeexpressedasfollows: (cid:1) (cid:3) (cid:1) (cid:3) Volt¼watt=ampere¼ m2kg = s3A 1.1.4.1.3 Watt Inanelectriccircuit,onewatt(joulespersecond)isacurrentofoneampereatapressureofonevolt.Intermsofbaseunits, (cid:1) (cid:3) Watt¼Js(cid:1)1¼ m2kg s(cid:1)3 1.1.4.1.4 Ohm Inanelectriccircuit,theunitofelectricalresistance(aderivedunit)inSIiscalledanohmandhasthesymbolofO.Oneohmis definedastheelectricalresistancebetweentwopointsonaconductorwhenaconstantpotentialdifferenceofonevolt,appliedto these points, produces in the conductor a current of one ampere. Ohm is a derived unit, and in terms of base units it can be expressedasfollows: (cid:1) (cid:3) (cid:1) (cid:3) OhmðOÞ¼volt=ampere¼ m2kg = s3A2 1.1.5 Rules for Using SI Units 1.1.5.1 Capitalization Thenamesofunitsstartwithalowercaseletterwhenwritingtheunitsoutexceptforinatitleorthebeginningofasentence.The only exception is “degree Celsius.”Unless they come from an individual's name (in which case the first letter of the symbol is capitalized), lowercase is used in writing symbols for units. The only exception is L for liter. Symbols for numerical prefixes (multiplesandsubmultiples)arealsolowercase,exceptforthoserepresentingmultipliersof106ormore,forinstance,mega(M), giga(G),tera(T),peta(P),exa(E),zetta(Z),andyotta(Y).Itmeansthatallprefixesarewritteninlowercasewhenspelledout. Lowercaseunits:m,kg,s,mol,etc.Uppercaseunits:A,K,Hz,Pa,C,etc. Symbolsratherthanself-styledabbreviationsshouldalwaysbeusedtorepresentunits. Correctusage:A,s.Incorrectusage:ampsec 1.1.5.2 Use ofPlurals Remember that symbolsare neverexpressed asplural. That is,an “s” is neveradded tothesymbol todenote plural. However, whenthenamesofunitsarespelledout,theyaremadepluralifthenumbertowhichtheyreferisgreaterthan1.Fractions,onthe otherhand,arealwayswrittenassingular.Pluralsareusedasrequiredwhenwritingunitnames.Forexample,henriesispluralfor henry.Thefollowingexceptionsarenoted: Table3 Conversionfactors Pressure pascal dynecm(cid:1)2 kgcm(cid:1)2 bar mmHg atm inHg psi 1 10 1.0192(cid:3)10(cid:1)5 10(cid:1)5 0.00750 9.8692(cid:3)10(cid:1)6 2.953(cid:3)10(cid:1)4 1.45038(cid:3)10(cid:1)4 0.100 1 1.01972(cid:3)10(cid:1)6 10(cid:1)6 0.000750 9.8692(cid:3)10(cid:1)7 2.953(cid:3)10(cid:1)5 1.45038(cid:3)10(cid:1)5 98,066 980,665 1 0.98066 735.559 0.96784 28.959 14.223 105 106 1.01972 1 750.062 0.98692 29.530 14.5038 133.32 1333.2 0.0013595 0.0013332 1 0.00131579 0.03937 0.0193368 101,325 1,013,250 1.03323 1.01325 760.0 1 29.921 14.6960 3386.4 33,864 0.034532 0.33864 25.400 0.033421 1 0.491154 6894.8 68,948 0.07030696 0.068948 51.715 0.068046 2.0360 1 Mass kg lb 1¼ 2.20462 0.45359¼ 1 Volume metre3 liter gal ft3 in3 1 1000 264.173 35.315 61,023.74 0.001a 1 0.264173 0.035315 61.02374 0.0037854 3.7854 1 0.13368 231.0 0.028317 28.317 7.48055 1 1728a 1.63871(cid:3)10(cid:1)5 0.0163871 4.329(cid:3)10(cid:1)3 5.787(cid:3)10(cid:1)4 1 Energy Watt-sec joule calorie fllb Btu E n 1 1 0.2390 0.73756 9.4845(cid:3)104 erg 4.184a 4.184a 1 3.08596 3.9683(cid:3)103 y 1.3558 1.3558 0.32405 1 1.2859(cid:3)103 Un 1054.35 1054.35 251.9957 777.65 1 its , Density kgm(cid:1)3(gL(cid:1)1) gcm(cid:1)3 lbgal(cid:1)1 lbft(cid:1)3 C o n v 1 0.001 0.008345 0.0624280 ers 1000 1 8.34538 62.4280 io n 119.827 0.119827 1 7.48055 s , 16.018463 0.016018 0.133680 1 a n Specificvolume m3kg(cid:1)1(Lg(cid:1)1) cm3g(cid:1)1 gallb(cid:1)1 ft3lb(cid:1)1 d D im 1 1000 119.827 16.018463 e n 0.001 1 0.119827 0.016018 sio 0.008345 8.34538 1 0.133680 n a 0.0624280 62.4280 7.48055 1 l A Specificheat J(gK)(cid:1)1 cal(gK)(cid:1)1 Btulb(cid:1)11F na ly s orentropy 1 0.2390 0.2390 is 4.184a 1 1.0 4.184a 1 1 7 (Continued) Table3 Continued 8 Pressure pascal dynecm(cid:1)2 kgcm(cid:1)2 bar mmHg atm inHg psi En e rg Entropy Jg(cid:1)1 calg(cid:1)1 Btulb(cid:1)1 yU 14.184a 01.2390 01..48a3021 nits, 2.3244 0.5556 1 Co n Thermal W(mK)(cid:1)1 W(cm1C)(cid:1)1 J(scm1C)(cid:1)1 cal(s(cid:4)cm1C)(cid:1)1 Btuh(cid:1)1ft1F ve rs conductivity 418.4a 1 1 0.2390 57.816 ion 418.4a 4.184a 4.184a 1 241.91 s, 1.7296 0.017296 0.017296 4.1338(cid:3)10(cid:1)3 1 an d Viscosity(1poise¼dyne-seccm(cid:1)2¼0.1newton-secm(cid:1)2) D lbm(fts)(cid:1)1 Nsm(cid:1)2 kg(ms)(cid:1)1 lbfhrft(cid:1)2 lbfsft(cid:1)2 Poiseg(cms)(cid:1)1 ime n s 1 1.4882 1.4882 8.6336(cid:3)10(cid:1)6 3.1081(cid:3)10(cid:1)2 14.8819 ion 0.0671955 1 1 5.8014(cid:3)10(cid:1)6 0.020885 10 al 115,827 172,369 172,369 1 3600 1,723,689 An 32.17405 47.88026 47.88026 2.7778(cid:3)10(cid:1)4 1 478.8026 aly 6.71955(cid:3)10(cid:1)2 0.1 0.1 5.8014(cid:3)10(cid:1)7 2.0885(cid:3)10(cid:1)3 1 sis Coefficientof W(m2K)(cid:1)1 kcal(hm21C)(cid:1)1 W(cm21C)(cid:1)1 cal(hcm21C)(cid:1)1 Btuh(cid:1)1ft21F heattransfer 1 0.8598 1(cid:3)10(cid:1)4 2.388(cid:3)10(cid:1)5 0.1761 1.630 1 1.1630(cid:3)10(cid:1)4 2.778(cid:3)10(cid:1)5 0.2048 10,000 8598 1 0.2388 1761.1 41,869 36,000 4.1869 1 7373.5 5.6783 4.8823 5.6783(cid:3)10(cid:1)4 1.3562(cid:3)10(cid:1)4 1 aInternationalTableBtu,cal,andkcal.Lineartemperaturedifference:1For1R,1CorK. Energy Units, Conversions, andDimensional Analysis 9 Singular:lux,hertz,siemensPlural:lux,hertz,Siemens Example1: Correctandincorrectusages Correctusage Incorrectusage 5kg 5kgs 5kilograms 5kilogram 5.57kg – 5.57kilograms 5.57kilogram 0.57kilogram 0.57kilograms 1.1.5.3 Use ofHyphenation andSpace Also remember that a hyphen or a space is not used to separate a prefix from the name of the unit. A space, however, is left betweenasymbolandthenumbertowhichitrefers,withtheexceptionofthesymbolsfordegree,minute,andsecondofangles, andfordegreeCelsius. Inthreecasesthefinalvowelintheprefixisomitted:megohm,kilohm,andhectare. Example2: Correctandincorrectusages Correctusage Incorrectusage 5kg 5kg 40(cid:5)450 3000 40(cid:5)450 3000 30(cid:5)C 30(cid:5)C 5km 5km MJ mF 5s 5s 5milliseconds 5milli-seconds 1.1.5.4 Use ofNumerals andPeriods Remember that scientific and technical writing is different from any other writings, such as newspaper, magazine, and other writings. In scientific and technical writing, numerals are used for all numbers expressing physical quantities; however, it is a common practice to write out the numbers from one to nine and use numerals for other numbers in newspapers. In ordinary books and magazines, for instance, whole numbers from one through ninety-nine, and any of these followed by “hundred,” “thousand,”“million,”“billion,”etc.,arespelledout.Also,keepinmindthattheassociatednumberiswrittenasnumeralswhen theunitisrepresentedbyanabbreviationorsymbol. PeriodsareneverusedafterSIsymbolsunlessthesymbolisattheendofasentence. 1.1.5.5 Use ofSymbolsfor Mathematical Operations Unitsarerepresentedbysymbols,notbytheirspelled-outnames,whentheunits(SI)areusedwithsymbolsformathematical operations. Notestoremember 1. Whenwritingunitnamesasaproduct,alwaysuseaspace(preferred)orahyphen. Correctusage:newtonmeterornewton-meter 2. When expressing a quotient using unit names, always use the word per and not a solidus (/). The solidus or slash mark is reservedforusewithsymbols. Correctusage:meterpersecond Incorrectusage:meter/second 3. Whenwriting aunitnamethatrequiresapower,useamodifier,suchassquared orcubed,aftertheunitname.Forareaor volume,themodifiercanbeplacedbeforetheunitname. Correctusage:millimetersquaredorsquaremillimeter 4. Whendenotingaquotientbyunitsymbols,anyofthefollowingareacceptedform: Correctusage:m/sorms(cid:1)1 Inmorecomplicatedcases,considerusingnegativepowersorparentheses.Foracceleration,usem/s2orms(cid:1)2butnotm/s/s. Forelectricalpotential,usekg.m2/(s3A)orkgm2s(cid:1)3A(cid:1)1butnotkgm2/s3/A. 10 EnergyUnits, Conversions,andDimensional Analysis Example3: Correctandincorrectusages Correctusage Incorrectusage Jkg(cid:1)1 Jkg(cid:1)1 jouleskg(cid:1)1 joulesperkilogram joules/kilogram N.m newton.meter newtonmeter newton-meter 1.1.6 Overall Examples Example4: Area Find:ShowtheunitofareainSI,andperformdimensionalanalysis. Solution: Areaequationisaquantityequationarisingfromgeometry;forexample,theareaequationforapipeisexpressedasfollows: AreaðAÞ¼pr2¼pðmÞ2 AreaðAÞ¼m2 whereAisthemagnitudeofareainm2,themagnitudeofpis3.14(dimensionless),andristhemagnitudeofradiusinm. Orinanotherexample,theareaforarectangleisexpressedasfollows: AreaðAÞ¼w (cid:3) l¼m (cid:3) m AreaðAÞ¼m2 whereAisthemagnitudeofareainm2,wisthemagnitudeofwidthinm,andlisthemagnitudeoflengthinm. Let’snowperformasimpledimensionalanalysistofindanexpressionforthearea.Theareaisdependentonthedimensionless numberpandtheradius.So, A¼kra wherekisadimensionlessnumber,andaisthenumbertobedetermined.Now,wecanreplaceeachsymbolbyitsfundamental physicalunit,andhave L2¼La Lisanindependentquantity;thereforewecanequatetheindicesonbothsides,andhavethefollowingequation a¼2 Consequently, the expression for the area can be found as A¼k ra, where the coefficient k cannot be determined from dimensionalanalysisbecauseitisdimensionless;however,fromgeometry,weknowthatk¼p. Example5: Volume Find:ShowtheunitofvolumeinSIandperformdimensionalanalysis. Solution: Volumeequationisaquantityequationarisingfromgeometry;forexample,thevolumeequationforapipeisexpressedasfollows: VolumeðVÞ ¼pr2L (cid:1) (cid:3) ¼p m2 ðmÞ VolumeðVÞ¼m3 whereVisthemagnitudeofvolumeinm3,themagnitudeofpis3.14(dimensionless),andristhemagnitudeofradiusinm. Orinanotherexample,thevolumeforarectangularcross-sectionisexpressedasfollows: VolumeðVÞ¼w(cid:3)l(cid:3)h¼m(cid:3)m(cid:3)m VolumeðVÞ¼m3 whereVisthemagnitudeofvolumeinm3,wisthemagnitudeofcross-sectionalwidthinm,listhemagnitudeofcross-sectional lengthinm,andhisthemagnitudeofheight. Let’s now perform a dimensional analysis to find an expression for the volume having a tubular cross-sectional area. The volumeisdependentonthedimensionlessnumberp,theradius,andlengthofthetube.So, V¼kraLb

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.