13.01 Azepines and their Fused-ring Derivatives J.B.Bremner UniversityofWollongong,Wollongong,NSW,Australia S.Samosorn SrinakharinwirotUniversity,Bangkok,Thailand ª2008ElsevierLtd.Allrightsreserved. 13.01.1 Introduction 1 13.01.2 ExperimentalStructuralMethods 2 13.01.2.1 SpectroscopicData 2 13.01.2.2 X-RayStudies 2 13.01.3 ReactivityofFullyConjugatedRings 2 13.01.4 ReactivityofNonconjugatedRings 5 13.01.5 ReactivityofSubstituentsAttachedtoRingCarbonAtoms 7 13.01.6 RingSynthesisbyRingConstruction 10 13.01.6.1 Typea(N–C–C–C–C–C–C) 10 13.01.6.2 Typeb(C–N–C–C–C–C–C) 14 13.01.6.3 Typec(C–C–N–C–C–C–C) 16 13.01.6.4 Typed(C–C–C–N–C–C–C) 26 13.01.6.5 ReactionInvolvingtheFormationofTwoBonds 30 13.01.7 RingSynthesisbyRingTransformation 30 13.01.8 SyntheticComparisons 36 13.01.9 ImportantCompoundsandApplications 36 13.01.10 FurtherDevelopments 38 References 40 13.01.1 Introduction The azepine ring system has continued to attract considerable attention since the publication of CHEC-II(1996) <1996CHEC-II(9)1>.Severalreviewsofthissystemhavealsoappeared<B-1996MI(56)1,2002PAC1317>,andan account of an efficient ring construction strategy for seven-membered rings, including dihydroazepines, has been published <2004SL933>. A reference series has also reviewed seven-membered heterocycles including azepines <2004SOS(17)749>andbenzazepines<2004SOS(17)825>,whileannualsynopsesofthesesystemsarecoveredin theseriesProgressinHeterocyclicChemistry.Mostofthechemistryhascenteredonreducedoroxidizedformsofthering system, since the parent 1H-azepine 1 is not stable, although N-substituted derivatives are known. Considerable chemistryhasbeendescribedforbenz-fusedazepinesandotherfusedderivatives.Chemicalaspectsoftheformer,of whichtheparentsare1H-1-benzazepine2,1H-2-benzazepine3,and3H-3-benzazepine4,andtheirtautomers,are alsocoveredinthischapter. 1 2 AzepinesandtheirFused-ringDerivatives 13.01.2 Experimental Structural Methods 13.01.2.1 Spectroscopic Data The1HNMR,13CNMR(NMR–nuclearmagneticresonance),infrared(IR),ultraviolet(UV),andmassspectro- metry(MS)datahavebeenreportedforthefirstexample5ofa2H-azepin-2-one(2-azatropone).Thecarbonylgroup stretchingfrequencyappearedat1682cm(cid:2)1intheIRspectrumoftheneatmaterial<2000JOC6093>.Further1H and13CNMRspectroscopicdataonazepinederivativeshavebeensummarizedbySmalley<1997HOU(E9d)108>. Aconformationalstudyofnovelpolyhydroxylatedazepaneshasbeenreportedinwhichthe1HNMRspectroscopy andmolecularmodeling(molecularmechanics,moleculardynamics,andMonteCarlomethods)affordedinsightsinto aspectsoftheconformationalanalysis<2004EJO4119>. Because of the medicinal chemical significance of 1-benzoyl-1H-1-benzazepines, as highly potent and selective nonpeptidic agonists for the arginine vasopressin (AVP) V receptor, some fundamental structural studies of the 2 N-substituted 1-benzazepine derivatives 6–9 have been assessed. Dynamic 1H NMR spectroscopy was used to investigatesolutionstateconformationalstructuresinassociationwithmolecularmechanicsstudies.Inthecaseof8, an axial conformer (with the 5-methyl group axial) was shown to be preferred over the equatorial conformer; the energy difference between the two was calculated to be 1.2kcalmol(cid:2)1 by molecular mechanics calculations and 0.9kcalmol(cid:2)1 experimentally from the equilibrium constant at 298K <2005JOC1545>. Also, as the amide bond distortionbecomesmoremarked,agreaterreluctancetoundergoconformationalchangeswasobserved. 13.01.2.2 X-Ray Studies ThesinglecrystalX-raystructureofthefirstreported2-azatroponehasbeendescribedbyKimuraetal.,inwhichthe ringwasshowntohaveatwist-boat-likeconformation<2000JOC6093>.SinglecrystalX-raydatawerealsousedto confirmthestructureofanumberof3H-azepines<1996LA887>,3H-1-benzazepine<1997HOU(E9d)336>,anda series of 1H-1-benzazepine derivatives 6–9, where the exocyclic double bond, present in 6, showed the expected flatteningoftheseven-memberedringtofavorahalf-chairconformation.Thecarbonylgroupwasorientedantitothe fusedbenzeneringineachofthesolid-statestructuresof6–8<2005JOC1545>. 13.01.3 Reactivity of Fully Conjugated Rings Satake et al. have described the mechanistic aspects of the formation of 2-methoxy-2H-azepine derivatives 11a–d from3H-azepines10a–duponreactionwithbromine<2003H(60)2211>(Scheme1).Unlikethesituationobserved with cycloheptatrienes, delocalized azatropylium salts were not formed from the reaction of 3H-azepines with bromine in the absence of an alcoholic solvent. Reaction of 12 with bromine gave 13 plus the bis-ether 14 and bromomethane. The product 14 was also observed in the reaction of 12 with NBS (0.5equiv); with 1equiv of N-bromosuccinimide(NBS)12affordedthesuccinimido-substitutedderivative15,whichuponeliminationofHBrin thepresenceofbasegavethe2H-azepine16(Scheme2)<2003H(60)2211>. AzepinesandtheirFused-ringDerivatives 3 Scheme1 Scheme2 Inan extension ofthe above workon reactions of3H-azepines, 17 with NBSat very low temperature((cid:2)98(cid:3)C) followedbytreatmentwithbasegavemainlythesubstitutedazepine16.At25(cid:3)C,bisazepinyletherswereobtained, including18(43%),plussome16(10%)(Scheme3)<2005JOC3425>. Scheme3 Anelectrochemicalreactionontheazepinecarbamates19resultedinaringcontractiontogivetheN-substituted anilines 20 in moderate yield (Equation 1). Mechanistically, initial oxidation of the carbamate to give the radical cation 21, followed by electrocyclic rearrangement to 22, C–N cleavage, and then reduction was proposed <1998H(48)1151>. 4 AzepinesandtheirFused-ringDerivatives ð1Þ Reactionofthe3H-azepines23(R¼R2¼But,R1¼R3¼H)and23(R¼R2¼H,R1¼R3¼But)withbromineand quenching with MeOH afforded the respective 2-methoxy-2H-azepine derivatives, which formed the more stable 3H-tautomers at 25(cid:3)C. In the latter, tautomerization proceeded further to produce the stable 2-azabicyclo[4.1.0]- heptadiene analogue 24 <1997J(P1)2015>. The 3H-azepines 25 with a 2-methoxy, 2-amino, or 2-dimethylamino substituentunderwentvalencetautomerizationunderUVlightirradiationtogive3-substituted2-azabicyclo[3.2.0]- hepta-2,6-dienes26(Equation2)<1997JCM276>;no5-substitutedderivativeswereobserved. ð2Þ Aphoto-induced[6þ2]cycloadditionofthechiralacrylate28withthechromiumcarbonylcomplex27affordedthe endo-adduct29inhighdiastereomericexcess(Equation3)<1995JOC7392>. ð3Þ Anewoxidativeringcleavageofthedialkyl-3H-azepine30ontreatmentwithseleniumdioxideafforded4-oxo- octa-2,5-dienal 31 together with minor amounts of the pyrrolone 32 and pyridine 33 plus the first report of the 2-azatropone34(Equation4).Theisomericdi-t-butylazepine35affordedmainlythepyridinederivative36,plusthe isomeric azepine 37, although in very low yield (Equation 5) <2000JOC6093>. In contrast, selenium dioxide oxidation of the methyl groups in the 1H-azepine derivative 38 afforded dialdehyde 39 in moderate yield (Equation6)<1999JOC1849>. AzepinesandtheirFused-ringDerivatives 5 ð4Þ ð5Þ ð6Þ 13.01.4 Reactivity of Nonconjugated Rings An alternative route to racemic 2-substituted azepanes 41, R¼Bu (65%), Ph (59%), involved addition of the appropriate Grignard reagent to the N-acyliminium ion species generated in situ from 40 upon elimination of the benzotriazolylmoiety(Equation7)<2005JOC3066>. ð7Þ Isomerization of the enantiopure hydroxylated azepane 42, after hydroxyl group activation, afforded either the ring-contractedpiperidinederivative45(onO-mesylationto43followedbyinternaldisplacementtotheaziridinium ionintermediate44andsubsequentchlorideioninducedringopening)orthechiralethylene-bridgedmorpholines 48via47andanintramolecularMitsunobureactionof46(Scheme4)<1996TL1613>. AdifferentapproachtoazepinederivativesinvolvedaPd-catalyzedcross-couplingreactionofthevinyltriflate49 with the (cid:2)-alkoxyboronate 50 (R¼H) to give 51 in 45% yield; acid-catalyzed hydrolysis then gave the azepine derivative52andthefusedazepine53,althoughyieldsweremodest(Scheme5)<2002JOC7144>. 6 AzepinesandtheirFused-ringDerivatives Scheme4 Scheme5 AzepinesandtheirFused-ringDerivatives 7 13.01.5 Reactivity of Substituents Attached to Ring Carbon Atoms ParallelliquidsynthesishasbeenappliedtothepreparationofavarietyofN,N9-disubstituted3-aminoazepin-2-ones 54(e.g.,R1¼m-BrC H )startingfrom1-substituted3-aminoazepin-2-ones<2003BMC3193>. 6 4 Substituted3-aminoazepanonesalsoformedthecoreofanumberofcyclolysine-basedbioactivenaturalproducts. A facile approach to these derivatives was based on electrooxidation of 55 to give the methoxy derivatives 56 in moderateyields<2004SL1029>.Theselatterderivativesinturncouldthenbeconvertedvia57totheenamides58 (Scheme6).OxidationoftheseenamideswithOsO /NMOthengave,aftertwofurtherfunctionalgroupmodifica- 4 tionsteps,the6-acetoxyazepanones61,via59and60(Scheme7). Scheme6 Scheme7 The tetrahydroazepine diphenylphosphates 62 (R¼OPO(OPh) , R1¼CO Ph) underwent a Stille coupling and 2 2 carbonylation to form 62 (R¼CHTCH , R1¼CO Ph) and 62 (R¼CO Me, R1¼CO Ph), respectively 2 2 2 2 <1998CC1757>. 8 AzepinesandtheirFused-ringDerivatives The synthesis of the reduced 2H-azepin-2-imine 64 (as its hydrochloride salt) via 63 with ammonia in EtOH followedbytreatmentwithhydrochloricacidindioxanehasalsobeendescribed<2003BMC689>;64isnotablyan inhibitorofinduciblenitricoxidesynthase. Enzymaticreactionsnowhaveasoundplaceincontemporarysyntheticmethodology.Illustrativeofthis,lipase- catalyzedtransesterificationoftheracemicalcohol65hasbeenusedeffectivelytoproduce(S)-(þ)-66(LipaseQL, 0–5(cid:3)C,4h;47%yield;>99%ee),plusthe(R)-((cid:2))-acetoxyderivative67(Equation8).The1-benzazepinederivative 66 was then converted to a chiral precursor required for the synthesis of the nonpeptide vasopressin V receptor 2 agonist, OPC-51803 <2002H(58)635>. The synthesis of a 1-benzazepine-based antagonist (OPC-41061) at this receptorhasalsobeenreported<2002H(56)123>. ð8Þ TheasymmetricsynthesisofthespiroazepinoneskeletonpresentincertainmarinetoxinswasreportedbyMurai etal.ADiels–Alderreactionwaskeytothesyntheticapproach.Forexample,70wasaccessedin82%yield(96%ee; 99:1exo/endoratio)from68andthediene69withX¼AsF inthechiralcoppercomplex(Equation9)<2002SL403>. 6 ð9Þ In connection with studies on structure–property relationships with dermal penetration enhancers, substituted azepinonederivatives(e.g.,74,R¼Meand75,R¼Me)weremadebyKimetal.fromthe3-aminoazepanone71via 72and73usingstandardfunctionalgroupmanipulations(Scheme8)<2001MI183>. Reactions of a 2-benzazepin-1-one derivative involving a spiroannelation procedure from 76 to afford the spiro- cyclic3-benzazepinederivative83via77–82havebeenreported(Scheme9)<2005H(65)1359>,whileotherchiral substituted 2-benzazepines have been prepared from D-glucose via furo[3,2-c][2]benzazepine derivatives <2005S2307>. Lactim ether formation from 2,3,4,5-tetrahydro-1H-1-benzazepin-2-one on reaction with dimethyl sulfate and triethyloxonium tetrafluoroborate has been described, and reactions of the lactim ether with a number of primary amineswerereported<2003CHE344>. AzepinesandtheirFused-ringDerivatives 9 Scheme8 Scheme9 10 AzepinesandtheirFused-ringDerivatives 13.01.6 Ring Synthesis by Ring Construction 13.01.6.1 Type a (N–C–C–C–C–C–C) In a very significant development, the parent 2H-azepine 85 was prepared for the first time (Scheme 10) <1995AGE1469>. A ring construction was adopted involving N-BOC deprotection of 84 followed by treatment with strongbasetoafford85afterintramolecularimineformationandbase-inducedeliminationofacetate.Whiletheyieldwas only1%,theazepinewassufficientlystableat25(cid:3)Cfor48htoallowfor1Hand13CNMRspectroscopiccharacterization. Scheme10 An extension of the above work to N-BOC deprotection of the amino ketones 86 gave the optically active 2H-azepines87(e.g.,87,R1¼Me,R2¼Me;56%).Readyisomerizationof87bya[1,5]-Hshifttothecorresponding 3H-azepineswasobservedwhentheformerwereleftinsolutioninorganicsolventsat25(cid:3)CoronwarminginCHCl 3 solution(Equation10)<1996T10883>. ð10Þ Anovelroutetotheazepinonesystemin93and94,basedonanintramolecularnitrone–eneallenecycloaddition (in 91 and92, whichwere accessed inturnfrom 88 via 89 and 90) andsubsequent rearrangement via N–Obond homolysisandanelectrocyclicrecyclizationstep)hasbeendescribed(Scheme11)<2005EJO2715>.Onheating93 intoluene,equilibriumwiththeisomericazepinone95wasestablished,althoughcomprisinglessthan3%of95.The generalsyntheticapproachwasappliedtothesynthesisofananalogueofthealkaloidastrocasine. Scheme11 Azepinones,forexample,97,canalsobeaccessedinhighyieldfromanalleneprecursor(e.g.,96)byBOC-group removalandthenintramolecularamineadditiontotheallene(Scheme12)<2005T6309>. AstereoselectivesynthesisoftheazepanecoreoftheproteinkinaseCinhibitorandfungalmetabolite,((cid:2))-balanol, andinvolvingC–Nbondformationintheringformingstep,hasbeendescribed(Scheme13)<2006TL1585>.The