ebook img

Compr. Heterocyclic Chem. III Vol. 8 Six-membered Rings with Two Heteroatoms PDF

899 Pages·2008·13.801 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Compr. Heterocyclic Chem. III Vol. 8 Six-membered Rings with Two Heteroatoms

8.01 Pyridazines and their Benzo Derivatives B.U.W.MaesandG.L.F.Lemie`re UniversityofAntwerp,Antwerp,Belgium ª2008ElsevierLtd.Allrightsreserved. 8.01.1 Introduction 3 8.01.2 TheoreticalMethods 4 8.01.3 ExperimentalStructuralMethods 5 8.01.3.1 X-Ray,NeutronandElectronDiffraction,andMicrowaveSpectroscopy 5 8.01.3.2 NMRSpectroscopy 6 8.01.3.2.1 1HNMR 6 8.01.3.2.2 13CNMR 6 8.01.3.2.3 15NNMR 6 8.01.3.3 MassSpectrometry 8 8.01.3.4 UV,IR,andRaman 9 8.01.4 ThermodynamicAspects 10 8.01.4.1 GeneralPhysicalProperties 10 8.01.4.2 Ionization 12 8.01.4.3 Aromaticity 12 8.01.4.4 ConformationofNonconjugatedCompounds 12 8.01.4.5 Tautomerism 13 8.01.4.5.1 Keto–enoltautomerism 13 8.01.4.5.2 Amino–iminotautomerism 13 8.01.4.5.3 Doublebondtautomersinnonconjugatedsystems 13 8.01.4.5.4 Methyl–methylenetautomerism 13 8.01.5 ReactivityofFullyConjugatedRings 14 8.01.5.1 IntramolecularThermalandPhotochemicalReactions 14 8.01.5.1.1 Intramolecularthermalreactions 14 8.01.5.1.2 Intramolecularphotochemicalreactions 15 8.01.5.2 ElectrophilicAttackatNitrogen 16 8.01.5.2.1 Introduction 16 8.01.5.2.2 Metals 16 8.01.5.2.3 Alkylhalides 18 8.01.5.2.4 Acylhalidesandrelatedcompounds 18 8.01.5.2.5 Peracids 19 8.01.5.2.6 Aminatingagents 19 8.01.5.3 ElectrophilicAttackatCarbon 19 8.01.5.4 NucleophilicAttackatCarbon 21 8.01.5.4.1 Introduction 21 8.01.5.4.2 Amines 21 8.01.5.4.3 Hydrazine 22 8.01.5.4.4 Carbonnucleophiles 22 8.01.5.4.5 Chemicalreduction 25 8.01.5.5 NucleophilicAttackatHydrogenAttachedtoRingCarbonorNitrogen 25 8.01.5.5.1 Metallationatcarbon 25 8.01.5.5.2 Alkylationofanionsformedbydeprotonationofazinones 26 8.01.5.5.3 Acylationofanionsformedbydeprotonationofazinones 27 1 2 PyridazinesandtheirBenzoDerivatives 8.01.5.5.4 Sulfonylationofanionsformedbydeprotonationofazinones 27 8.01.5.5.5 Otherreactions 27 8.01.5.6 ReactionswithRadicals 27 8.01.5.7 CycloadditionReactions 28 8.01.5.7.1 [2þ4]Cycloadditionreactions 28 8.01.5.7.2 1,3-Dipolarcycloadditionreactions 30 8.01.6 ReactivityofNonconjugatedRings 34 8.01.6.1 Introduction 34 8.01.6.2 DihydroDerivativesContainingaCarbonylGroupintheRing 34 8.01.6.3 DihydroDerivativeswithoutaCarbonylGroupintheRing 36 8.01.6.4 TetrahydroDerivatives 36 8.01.6.5 Hexahydroderivatives 37 8.01.7 ReactivityofSubstituentsAttachedtoRingCarbons 39 8.01.7.1 AlkylGroups 39 8.01.7.2 CarboxylicAcidsandEsters 40 8.01.7.3 CarboxylicAmides 41 8.01.7.4 Nitriles 41 8.01.7.5 AldehydesandKetones 42 8.01.7.6 OtherSubstitutedAlkylGroups 43 8.01.7.7 AlkenylGroups 43 8.01.7.8 AlkynylGroups 43 8.01.7.9 ArylGroups 44 8.01.7.10 AminoandIminoGroups 44 8.01.7.10.1 Reactionofelectrophilesattheaminogroup 44 8.01.7.10.2 Reactionofaminoandiminogroupswithnucleophiles 45 8.01.7.10.3 t-Aminoeffect 45 8.01.7.11 OtherN-LinkedSubstituents 46 8.01.7.11.1 Nitrogroups 46 8.01.7.11.2 Hydrazinogroups 46 8.01.7.11.3 Carbodiimidogroups 47 8.01.7.11.4 Azidogroups 47 8.01.7.12 HydroxyandOxoGroups 47 8.01.7.12.1 Reactionswithelectrophiles 47 8.01.7.12.2 Reactionswithnucleophiles 48 8.01.7.13 OtherO-LinkedSubstituents 49 8.01.7.13.1 Alkoxyandaryloxygroups 49 8.01.7.13.2 Triflateandtosylateesters 50 8.01.7.14 S-LinkedSubstituents 51 8.01.7.14.1 Thiolandthionegroups 51 8.01.7.14.2 Alkylthio,alkylsulfinyl,andalkylsulfonylgroups 52 8.01.7.15 HalogenAtoms 52 8.01.7.15.1 Replacementofahalogenbyametal 52 8.01.7.15.2 Replacementofahalogenbytransitionmetalmediatedcoupling 52 8.01.7.15.3 NucleophilicdisplacementbyclassicalS mechanism 63 AE 8.01.7.16 MetalsandMetalloidDerivatives 68 8.01.8 ReactivityofSubstituentsAttachedtoRingNitrogens 69 8.01.8.1 N-AlkylGroups 69 8.01.8.2 N-Chloro 71 PyridazinesandtheirBenzoDerivatives 3 8.01.8.3 N-Nitro 71 8.01.8.4 N-Acyl 71 8.01.8.5 N-Sulfonyl 71 8.01.8.6 N-Amino 71 8.01.8.7 N-Oxide 71 8.01.9 RingSynthesis 72 8.01.9.1 FormationofOneBond 72 8.01.9.1.1 Betweentwoheteroatoms 72 8.01.9.1.2 Adjacenttoaheteroatom 73 8.01.9.1.3 (cid:2)toaheteroatom 75 8.01.9.1.4 Formationofbenzorings 77 8.01.9.2 FormationofTwoBonds 77 8.01.9.2.1 From[5þ1]fragments 77 8.01.9.2.2 From[4þ2]fragments 79 8.01.9.2.3 From[3þ3]fragments 85 8.01.10 RingSynthesisbyTransformationofAnotherRing 85 8.01.10.1 ByRingExpansion 85 8.01.10.2 ByRingContraction 87 8.01.10.3 ByCycloaddition 88 8.01.10.4 ByReactionofHydrazineswithCyclicEquivalentsof1,4-DiketoandRelated Compounds 90 8.01.10.5 ByCleavageofaSecondfusedRing 90 8.01.10.6 OtherMethods 90 8.01.11 SynthesisofParticularClassesofCompounds 92 8.01.11.1 ParentCompoundsandSyntheticallyImportantDerivatives 92 8.01.11.2 SynthesisofPyridazinoFusedRingSystems 93 8.01.12 ImportantCompoundsandApplications 93 8.01.12.1 Introduction 93 8.01.12.2 CompoundsthatOccurinNature 94 8.01.12.3 Pharmaceuticals 96 8.01.12.4 Agrochemicals 99 8.01.12.5 MaterialSciences 101 8.01.13 FurtherDevelopments 103 References 104 8.01.1 Introduction Twocomprehensivereviewsonthesyntheticaspectsofpyridazinesandtheirbenzoderivativesappearedsince1995 <2000AHC(75)167, 2000HC(57)1>. The most recent comprehensive work published on pyridazines <2004SOS(16)125>, phthalazines <2004SOS(16)315>, and cinnolines <2004SOS(16)251> was written by Haider and Holzer for the Science of Synthesis series.The majority ofthe review material thatappeareddeals with specific synthetic topics in the field and are often accounts of the authors own scientific work <2001T4059, 2001T4489, B-2002MI369, 2004COR1463, 2004SL1123, 2006COR277, 2006COR377, B-2006MI541, 2006SL3185>. Some reviewsonlydealpartlywith1,2-diazines<2004CRV2433,2006S2625>.Itisnotourintentiontociteallavailable reviewsofthelastdecade,butmerelytogivethereaderanideaofthetypesofpublishedrelatedreviewmaterialas wellasafirstinsightintothisliterature. Around the subject area of this chapter also biannual international conferences are organized which started in Strasbourg(1988)andwereheldinSopron(1996),ClearwaterBeach(1998),SantiagodeCompostela(2000),Ferrara 4 PyridazinesandtheirBenzoDerivatives (2002),Antwerp(2004),andStrasbourg(2006)inthecoveredperiodofthischapter.Certainlytherehasbeenalotof activity in the pyridazine and benzo derivative field in the 1996–2006 period. A search on the ‘Web of Science’ revealed1756articlesforthetopic‘pyridazin*’,574for‘phthalazin*’and168for‘cinnolin*’.Thesamesearchonthe ‘Scifinder’ database revealed 5203, 1943 and 462 hits for the concepts ‘pyridazin’, ‘phthalazin’, and ‘cinnolin’, respectively. Patentshaveonlybeentaken intoaccountin Section8.01.12.Inthischapteremphasishas beenput on new and adapted older methods, as well as new interesting examples of well established methods. Selections necessarilyhadtobemadeduetothelargeamountofmaterialpublishedwithintheconsideredtimeframe.Fully conjugated pyridazines, phthalazines and cinnolines as well as (partly) reduced and oxo forms (both only in the 1,2-diazinering)arecoveredinthiswork. IUPACnomenclaturehasbeenusedinthemajorityofthenames.Onlywhenthereadabilityofthemanuscriptwas hampered,wedecidedtousealternativenames.Trivialnameshaveonlybeenincludedwhentheyarereallywell established. 8.01.2 Theoretical Methods AsurveyofninecomputationalmethodswasundertakentocalculateC–Hbond-dissociationenergiesofmonocyclic aromaticmoleculesincludingpyridazine.Comparisonofthecalculatedbond-dissociationenergieswiththeavailable experimentalvaluesforthesemoleculesrevealedthattheB3LYPmethodprovidesthebestagreement(3kcalmol(cid:2)1)of calculatedwithexperimentalvalues<1999JA491>.Therelativestabilityandenergybarrierstowardtautomerismofthe conventionalradical-cationandits(cid:3)-distonictautomerofpyridazineandotherheterocycleshavebeendeterminedby computationalmethods.Bothradicalcationsarestablespecieswhichexistindiscreteenergywells,withasignificant barriertowardstheirinterconversion.Theconventionalradicalcationisthemorestableone<2004IJM1>. Abinitiocalculationshavebeenusedtointerprettheobservedbasicitiesofmonocyclicandbicyclicazines.Intwo separateseries,A(pyridineandthemonocyclicdiazines)andB(thebenzodiazines),agoodlinearrelationshipexists between the experimental pK values and the highest occupied molecular orbital (HOMO) energy. Therefore, a basicitiesofazinesmaydirectlybeinterpretedintermsofHOMOenergies<1995JMT(339)255>.Similarlyinseries AagoodlinearrelationshipisobservedbetweenexperimentalpK valuesandthecontractionsofthepolarizabilityby a theeffectofsingleprotonation<2004CPL(396)117>. Hydrogen-bonding interaction received considerable interest because of its important role in chemical and biological processes. Absorption and fluorescence solvatochromic shifts of dilute pyridazine in water as a result of solvent–soluteinteractionsarecalculated.Supportisprovidedtothehypothesisthattwolinearhydrogenbondstothe pyridazineN-atomsareformedindiluteaqueoussolutions<1996JPC9561>.AsurveyoftheCambridgeStructural DatabaseandintermolecularperturbationtheorycalculationsonN(cid:3)(cid:3)(cid:3)HOCH interactionssuggeststhatthehydrogen 3 bondsareformedprimarilyinthedirectiontraditionallyassignedtothenitrogenlonepair<1997JCC2060>.Inertia momentsderivedfrommillimeterspectraofthe1:1complexbetweenpyridazineandwatersuggestaplanarstructure in which one hydrogen of the water molecule is bound to the nitrogen of the aromatic ring, and the ‘free’ water hydrogenisentgegentothering(Figure1)<1998JPC8097>. Figure1 Pyridazine–watercomplex. ThisbenthydrogenbondisconfirmedbyabinitiocalculationsusingtheB3LYPdensityfunctionalmethodanda 6-31þG(d,p) basis set, performed in a more general study on pyridazine–(water) clusters <2002CPH(276)277>. n Thermodynamic parameters for the hydrogen-bonding interaction of azabenzenes with thioacetamide in carbon tetrachloride solution were determined using near-IR absorption spectroscopy (IR – infrared), and the association energy of these complexes has been calculated at the B3LYP/6-311G** and B3LYP/6-31þG** levels, showing excellent agreement with the relative hydrogen-bonding strength. Also the association energy of 1:1 complexes with acetamide and water was calculated at the B3LYP/6-31þG** level. Bifurcated hydrogen bonding of the two adjacentnitrogenatomsofpyridazinemayenhancethestabilityofthecomplexes<2004JPC921>. PyridazinesandtheirBenzoDerivatives 5 Infrared spectra for 2-substituted 4,5-dimethoxypyridazin-3(2H)-ones were measured in hexane–CHCl and 3 CH CN–D O mixtures. Free, linearly, and angularly hydrogen-bonded pyridazinones were distinguished by a 3 2 correlationstudyof(cid:4)˜ (CTO)valueswithmolefractionsofthelesspolarcomponentsofthebinarysolventmixtures <2002CCC1790>.Geometricaloptimizationsofninetautomersandrotamersof4-methyl-1,2-dihydropyridazine-3,6- dione werecarried out at the B3LYP/6-31G(d), B3LYP/6-31þG(d,p),and MP2/6-31G(d) levels.Energies, thermo- dynamic quantities, rate constants, and equilibrium constants of ten tautomeric and rotational transformations betweenthenineformsinthegasphaseandaqueousphasewereobtained<2005CPL(415)176>. AtheoreticalstudyofthestructureandtautomerismofthefourpossiblehydroxypyridazineN-oxides,aswellas pyridazine1,2-dioxideispresented.Gas-phasepropertiesaremodeledwithhigh-levelabinitiocalculationsemploy- ing large basis sets (6-311þþG(3df,3pd)) and quadratic configuration interaction treatment of electron correlation (QCISD(T)).Sincetheseacidicheterocyclesareofinterestascarboxylatebio-isosteres,theiranionicconjugatebases are also examined. Aqueous solution-phase properties are investigated using the isodensity polarized continuum model (IPCM), and the semi-empirical AM1–SM2 and PM3–SM3 models, and relative acidities compared. The calculated properties are generally in good agreement with existing experimental data, indicating that the oxo- 1-hydroxytautomerpredominatesbothinthegasphaseandinsolutioninthecaseofthe6-substitutedsystem,and that the hydroxy-1-oxide tautomers predominate in the 3- and 5-substituted systems. The behavior of the 4-substitutedisomerislessclear,withnonplanar1-hydroxyandplanar4-hydroxytautomersbeingsimilarinstability <1997JMT(419)97>. The lipophilicity of 4- and 5-aminopyridazin-3(2H)-ones has been calculated by KOWWIN-EVA and 3DNET computationalmethods.ThecalculatedlogPvaluesareingoodagreementwiththeexperimentalvalues.Generally, the4-aminoderivativeshavebeenfoundtopossesshigherlogPvalues.Itseemsthathydrogen-bondingcapacityand/or aromaticityarethemostrelevantparametersdeterminingthelogPvaluesofthisclassofcompounds<2003JFA5262>. Semi-empiricalAM1andPM3calculations,anddensityfunctionaltheory(DFT)calculationshavebeenexecuted to support proposed reaction mechanisms of the 1,3-dipolar cycloaddition reaction of 5-substituted pyridazinones with nitrile imines <2000JMT(528)13>, the ring-closure reaction of 5-morpholino-4-vinylpyridazin-3(2H)-ones by tert-amino effect <2003JMT(666/7)667> and the reaction of chloropyridazin-3(2H)-ones with 57% HI or sodium iodideindimethylformamide(DMF)<2005JMT(713)235>.Theselectivityoffree-radicalbrominationsofmethyl- 3-methoxypyridazinederivativeswithN-bromosuccinimide(NBS)isconfirmedtoberelatedtothestabilityofthe freeradicalsformedintherate-limitingstep.Semi-empiricalcalculationsusingthePM3Hamiltoniangenerallygive relative energies which qualitatively reproduce the selectivities observed experimentally <1996JMT(368)235>. Atopologicalanalysisoftheelectronlocalizationfunctionhasbeenappliedtoexplorethenatureofbondinginthe thermalcyclization of(2-ethynylphenyl)triazene tocinnoline.The analysisshows thatthiscyclization isapseudo- pericyclicprocessincontrasttothecyclizationof2-ethynylstyrenetonaphthalenewhichisamorepericyclicprocess <2005JPC4352>. Thestructuralpropertiesofpyridazineandphthalazinederivedfrommicrowavespectroscopy,electronandX-ray diffractionhavebeencomparedwiththeoreticaldataobtainedfromtransitionalabinitiocalculations,includingboth restrictedHartree–Fockandsecond-orderMoller–Plessetperturbationtheory,andDFTcalculations<1996JPC6973, 1998JMT(423)225, 2005JMT(717)171>. In addition, theoretical data were obtained from infrared and/or Raman spectroscopyinthevapor,theliquid,orthecrystallinephases,whichwereusedtointerpretthevibrationalspectraof pyridazine <1995JMT(349)409, 1996JPC6973, 1998JMT(423)225, 2001JPC9354>, chlorinated pyridazines <2000PCA2599, 2001JPC9354>, and phthalazine <2005JMT(717)171>. These studies not only include results obtainedbyusingstandard (scaled)harmonicforcefieldcalculations,butalsoincorporate resultsderivedbyusing newermethodologiesemployedforthepredictionofanharmonicforcefields<2004JPC3085,2004JPC4146>andby usingcorrectionsforanharmonicresonances<2005PJP425>.Finally,differentmethodologiesusedfortheprediction of electronic spectra <2000CPH(257)1, 1998JRS547> and resonance-enhanced multiphoton ionization (REMPI) spectra<1998JPC8084>havebeenevaluated. 8.01.3 Experimental Structural Methods 8.01.3.1 X-Ray, Neutron and Electron Diffraction, and Microwave Spectroscopy InCHEC(1984) <1984CHEC(2)1> electron diffraction, microwavespectroscopy, and X-rayanalysis ofpyridazine andsimplederivativeswereincluded.AlldataareconsistentwithaplanarstructureandsignificantN–Nsinglebond character.CHEC-II(1996)<1996CHEC-II(6)1>containedsomeadditionalstructuralparametersderivedfromX-ray 6 PyridazinesandtheirBenzoDerivatives analysis of 1,2-diazines such as pyridazine-3,6-dicarboxylic acid. Phthalazine derivatives were also discussed. New work includes X-ray data on the 1:1 salt of pyridazine and 4-chloro-3-nitrobenzoic acid <2002AXE1081>, 3,4,6-tris(pyrazol-1-yl)pyridazine <2002AXE1408>, and 2-bromobenzo[c]cinnoline 6-oxide <2001AXE645>. The tricyclicskeletonofthelastmentionedcompoundconsistsofalmostplanarrings.TheN–Obondseemstobeshorter thaninthecorrespondingbondinpyridineN-oxidewhichisprobablyaresultoftheelectronresonancebetweenthe oxygenatomandthearomaticnucleus.Alsoseveralpyridazin-3(2H)-onederivativeshavebeenanalyzedviaX-ray <1996JST(374)251, 2004T12177, 2005T4785, 2006AXE446>. Interesting to mention is the further study of the polymorphism of maleic hydrazide <2001AXB697>. There seems to be a third polymorph which is monoclinic. X-Raydatauptomid-1998havebeensummarizedbyTisˇler<2000AHC(75)167>. 8.01.3.2 NMR Spectroscopy 8.01.3.2.1 1HNMR InCHEC(1984)<1984CHEC(2)1>,1HNMRspectraofsimplepyridazines,pyridazin-3(2H)-ones,andpyridazine N-oxidesweretabulated.Cinnolinederivativeswerealsocoveredinthisway.Areferencetothe1HNMRspectrum ofphthalazinewasgiven.Besidestheshiftvaluesalsocouplingconstantswerenicelysummarizedforallthese1,2- diazines. In CHEC-II(1996) <1996CHEC-II(6)1>, phthalazin-1(2H)-ones were mentioned. Moreover, useful gen- eralshiftandcouplingconstanttrendsfor1HNMRspectraof1,2-diazineswereprovided.1HNMRisnowaroutine techniqueandamajorityofthefullpaperarticlescontaininterpreteddata.Takingintoaccounttheimportanceof pyridazin-3(2H)-ones(Figure2)andthelimitednumberprovidedintheCHEC(1984)table,weincludedhereanew table(Table1).Additionally,wehavetabulateddataforsomebicyclicderivatives:[1,2,4]triazolo[4,3-b]pyridazines andtetrazolo[1,5-b]pyridazines(Table2andFigure3). Figure2 Structureandnumberingofpyridazin-3(2H)-ones. 8.01.3.2.2 13CNMR Since the publication ofCHEC(1984) <1984CHEC(2)1>, the use of 13C NMRseriously expanded. The majority of the full papers now published contain 13C NMR spectroscopic data. Unfortunately, this is usually only for characterization of the synthesized compounds and no interpretation of the data is provided. In CHEC-II(1996) <1996CHEC-II(6)1>, a representative and very useful table with assigned 13C shifts of simple pyridazines and pyridazin-3(2H)-ones was published. Phthalazin-1(2H)-ones were also briefly mentioned. As an extension we here summarize some assigned 13C NMR data of bicyclic derivatives: [1,2,4]triazolo[4,3-b]pyridazines and tetrazolo[1,5-b]- pyridazines(Table2andFigure3),andisoxazolo[3,4-d]pyridazin-7(6H)-ones(Table3andFigure4). 8.01.3.2.3 15NNMR InCHEC-II(1996)<1996CHEC-II(6)1>15Nshiftsofpyridazine,phthalazine,cinnoline,aswellassomederivatives werementioned.15NNMRdataofsomesimple[1,2,4]triazolo[4,3-b]-andtetrazolo[1,5-b]pyridazinesaresummarized in Table2. The 15NNMRis especially useful for structureanalysis ofsuch compoundsas they consistof a large number of nitrogen atoms consequently leading to limited information resulting from classical 1H and 13C NMR spectra. After all, the 15N shift gives an immediate correlation with the electronic environment of the chemically different nitrogen atoms present in the molecule. For the [1,2,4]triazolo[4,3-b]pyridazines 15N NMR in dimethyl sulfoxide (DMSO) supported a triazolo rather than an open azido form <1999MRC493>. More derivatives were studiedinalaterpaper<2002MRC507>.HolzerandDalPiazprovided15Nshiftsofthesynthetically(seeSection 8.01.10.5)andbiologicallyimportantisoxazolo[3,4-d]pyridazin-7(6H)-ones(Table3). PyridazinesandtheirBenzoDerivatives 7 Table1 1H-NMR(cid:5)-valuesofsubstitutedpyridazin-3(2H)-ones (cid:5)-NH Substituents (bs) (cid:5)-(H-4) (cid:5)-(H-5) (cid:5)-(H-6) (cid:5)-Substituents 4-Cl,5-MeOb,c 13.26 8.10 4.06s3H 4-Br,5-MeOb,c 13.24 8.10 4.07s3H 4-Cl,5-Nb,c 13.26 8.08 3 4-Br,5-Nb,c 13.32 8.04 3 4-Cl,5-NHEta,c 12.42 7.63 1.32t3H,3.41q2H,5.19bs1H 4-Br,5-NHEta,c 12.42 7.42 1.12t3H,3.21q2H,4.98bs1H 4-Cl,5-OPha,c 7.54 7.26-7.48m5H 4-Br,5-OPhb,c 13.43 7.53 7.23-7.51m5H 6-Phb,d 13.18 6.98d 8.00d 7.84m2H,7.46m3H J¼9.9Hz J¼9.9Hz 5-Cl,6-Phb,d 13.85 7.44 7.58-7.50m5H 5-Br,6-Phb,d 13.78 7.45 7.51m5H 5-N,6-Phb,d 13.16 6.80 7.58m2H,7.45m3H 3 5-OMe,6-Phb,d 12.86 6.31 7.59m2H,7.14m3H;3.80s3H 5-SMe,6-Phb,d 12.93 6.59 7.48m5H;2.39s3H 5-CN,6-Phb,e 14.03 7.93 7.63m2H,7.50m3H 5-CHOH,6-Phb,e 13.07 6.93 7.46-7.44m5H;5.62s1H,4.26s2H 2 5-CHO,6-Pha,f 13.82 7.46 7.70-7.60m5H;9.87s1H 5-COMe,6-Pha,f 12.64 7.43 7.44m5H;2.14s3H (cid:5)-NMe Substituents (s) (cid:5)-(H-4) (cid:5)-(H-5) (cid:5)-(H-6) (cid:5)-Substituents 5-OMeb,g 3.72 6.15d 7.54d 3.80s3H J¼2.9Hz J¼2.9Hz 5-OPha,g 3.74 5.98d 7.75d 7.09d2H,7.29t1H,7.44t2H J¼2.8 J¼2.8 5-NHEta,g 3.67 5.68d 7.31d 1.27t3H,3.12m2H,4.54bs1H J¼2.6 J¼2.6 5-Ia,h 3.72 7.46d 7.90d J¼2.05 J¼2.05Hz 4-Cl,5-OMeb,i 3.69 8.21 4.07s3H 4-OMe,5-Clb,j 3.64 7.99 4.14s3H 4-Cl,5-OPha,h 3.82 7.45 7.44m2H,7.27tt1H,7.09dd2H 4-OPh,5-Cla,h 7.80 7.32dd2H,7.12tt1H,6.96dd2H Substituents (cid:5)-NPh (cid:5)-(H-4) (cid:5)-(H-5) (cid:5)-(H-6) (cid:5)-Substituents 4,5-diCla,k 7.59-7.42 7.91 4-Cl,5-OMea,k 7.58-7.39 7.95 4-Cl,5-Na,k 7.58-7.41 7.76 3 4-OMe,5-Clb,j 7.50-7.53 8.16 4.17s3H Substituents (cid:5)-NCl (cid:5)-(H-4) (cid:5)-(H-5) (cid:5)-(H-6) (cid:5)-Substituents 4,5-diCla,l 7.76 4-Cl,5-OMea,l 8.21 4.07s3H aCDCl . 3 bDMSO-d . 6 c1999JHC277. d2002BMC2873. e1999JHC985. f2003CPB427. g1998JHC819. h2004T2283. ispectrumrecordedinthelaboftheauthors. j2001T1323. k2004TL8781. l2005S1136. 8 PyridazinesandtheirBenzoDerivatives Table2 1H,13Cand15NNMRvaluesof6-substituted[1,2,4]triazolo[4,3-b]pyridazinesandtetrazolo[1,5-b]pyridazines X¼CH X¼N R1 Cld N((CH) )Od Ha,d Cla,d OMea,d N((CH)) Oa,d N b,e NPPhc,e 222 222 3 3 (cid:5)-(H-3) 9.63 9.20 (cid:5)-(H-7) 7.48 7.36 8.05 7.50 7.71 7.43 7.26 (cid:5)-(H-8) 8.45 8.09 8.95 8.63 8.40 8.62 7.83 (cid:5)-(H-29) 3.50 3.65 (cid:5)-(H-39) 3.74 3.76 (cid:5)-(H-OMe) 4.12 J (Hz) 10.15 9.46 9.46 10.00 9.5 9.5 7-8 (cid:5)-(C-3) 138.8 138.3 (cid:5)-(C-6) 149.1 155.1 148.4 151.4 162.3 156.2 155.8 160.5 (cid:5)-(C-7) 123.0 114.8 125.9 127.3 120.9 117.9 121.8 128.4 (cid:5)-(C-8) 126.6 124.1 125.6 128.2 126.1 123.7 127.7 121.6 (cid:5)-(C-8a) 142.2 141.7 143.2 142.6 141.4 139.7 143.1 140.0 (cid:5)-(C-29) 45.6 45.3 (cid:5)-(C-39) 65.5 65.4 (cid:5)-(C-OMe) 55.8 J (Hz) 221.0 216.7 CH-3 J (Hz) 180.1 171.0 182.4 176.7 172.6 CH-7 J (Hz) 178.3 174.7 181.3 180.4 178.8 CH-8 (cid:5)-(N-1) (cid:2)74.7 (cid:2)77.1 (cid:2)64.2 (cid:2)63.1 (cid:2)64.1 (cid:2)64.0 (cid:2)63.5 (cid:2)68.6 (cid:5)-(N-2) (cid:2)48.8 (cid:2)54.8 þ14.5 þ10.6 þ8.6 þ12.3 þ3.8 (cid:5)-(N-3) (cid:2)25.6 (cid:2)26.1 (cid:2)26.4 (cid:2)27.0 (cid:2)28.6 (cid:5)-(N-4) (cid:2)153.5 (cid:2)161.2 (cid:2)99.9 (cid:2)101.6 (cid:2)109.3 (cid:2)105.4 (cid:2)106.2 (cid:2)103.9 (cid:5)-(N-5) (cid:2)84.8 (cid:2)133.9 (cid:2)68.9 (cid:2)82.5 (cid:2)124.4 (cid:2)131.5 (cid:2)108.8 (cid:2)121.4 (cid:5)-(N-19) (cid:2)302.6 (cid:2)297.7 (cid:2)276.8 (cid:2)284.0 (cid:5)-(N-29) (cid:2)146.0 (cid:5)-(N-39) (cid:2)140.3 aDMSO-d . 6 bacetone-d . 6 cCDCl . 3 d1999MRC493. e2002MRC507. Figure3 Structureandnumberingof6-substituted[1,2,4]triazolo[4,3-b]pyridazinesandtetrazolo[1,5-b]pyridazines. Figure4 Structureandnumberingof4,6-disubstituted3-methylisoxazolo[3,4-d]pyridazin-7(6H)-ones. 8.01.3.3 Mass Spectrometry The electron ionization (EI) mass spectral behavior of pyridazine, pyridazin-3(2H)-one, and phthalazine was dis- cussed in CHEC(1984) <1984CHEC(2)1>. In CHEC-II(1996) <1996CHEC-II(6)1> the comparison of the high- resolution EI mass spectra of pyridazin-3(2H)-one, phthalazin-1(2H)-one and cinnolin-3(2H)-one was mentioned. PyridazinesandtheirBenzoDerivatives 9 Table3 13Cand15NNMR(cid:5)-values(DMSO-d )of4,6-disubstituted3-methylisoxazolo[3,4-d]pyridazin-7(6H)-ones 6 <2005MRC240> R1 2-Thienyl 3-Thienyl Ph Me Me Me Phe 4-Pyridyl R2 H H H H Me Ph Me Me 13C C-3 171.0 171.1 171.0 171.3 171.7 171.9 171.3 171.3 C-3a 110.4 111.0 110.9 112.0 112.0 111.9 111.0 110.5 C-4 136.8 138.3 142.5 140.4 140.1 140.9 141.9 139.6 C-7 153.3 153.5 153.5 153.7 152.4 152.4 152.3 152.4 C-7a 151.9 151.9 152.0 151.6 151.3 152.1 151.7 151.7 3-Me 14.3 13.8 13.7 12.8 12.8 12.9 13.7 13.9 R1 135.7(2), 134.7(3), 133.8(1), 18.7 18.7 18.9 133.4(1), 150.1(2,6), 129.0(3), 127.6(4), 129.6(4), 129.8(4), 140.8(4), 128.5(5), 127.0(5), 128.5(3,5), 128.5(3,5), 122.8(3,5) 127.7(4) 126.7(2) 128.4(2,6), 128.4(2,6) R2 37.5 140.9(1), 38.0 38.1 128.6(3,5), 127.6(4), 126.2(2,6) 15N N-1 (cid:2)1.2 (cid:2)0.9 (cid:2)0.7 (cid:2)0.1 (cid:2)0.2 1.4 (cid:2)0.8 (cid:2)0.7 N-5 (cid:2)71.5 (cid:2)70.3 (cid:2)69.0 (cid:2)74.6 (cid:2)65.6 (cid:2)66.4 (cid:2)60.5 (cid:2)57.7 N-6 (cid:2)190.5 (cid:2)190.8 (cid:2)190.2 (cid:2)192.0 (cid:2)195.2 (cid:2)180.7 (cid:2)193.5 (cid:2)192.4 EI mass spectral behavior of 1,10-diethylbenzo[c]cinnoline was also discussed. There are not so many scientific papers that specifically study fragmentation of 1,2-diazines. In most cases the reported work deals with synthetic aspectsof1,2-diazinesandlow-orhigh-resolutionmassspectraarejustusedasacharacterizationtooltoconfirmthe molecularmassofthemolecule.Inthelastdecadeonecanclearlyseethatmoreandmoremassspectrometry(MS) datareporteddonotuseclassicalEIbutelectrosprayionization(ESI)toionizethe1,2-diazinemolecule.ESI(based onprotonationordeprotonation)(nounpairedelectrons)isasoftermethodthanEI(unpairedelectrons),inherently leadingtolesseasyfragmentationofthegeneratedion.Newfundamentalmassspectrometrystudiesthatappeared include the EI ionization and fragmentation of 2-(3-oxo-1,3-dihydro-2-benzofuran-1-yl)phthalazin-1(2H)-one 1 <2000SAA1045> (Scheme 1), 6-phenyl-4-phenylsulfonylpyridazin-3(2H)-one 2 <2001H(54)237> (Scheme 2), and6-phenyl-2-phenylsulfonylpyridazin-3(2H)-one3<2001H(54)237>(Scheme2). 8.01.3.4 UV, IR, and Raman The IR spectrum of pyridazine was obtained as the pure liquid and in solution, in the gas phase, and as a polycrystallinefilm.ARamanspectrumoftheliquidwasalsoreported<1998JRS547>.Vibrationalspectraofsimple derivativessuchas3,6-dichloropyridazineand3,4,5-trichloropyridazineassolidsandinsolutionwerereportedaswell <2000PCA2599>.Soteloandco-workersstudiedthe(cid:4)˜ CTOaborptionbandinIRspectraofseveral5-substituted (H, CHO, CN, SO Me, NH ,OEt) 6-phenylpyridazin-3(2H)-ones as solids confirmingthat the lactam form is the 2 2 majortautomer<2002T2389>.The13CNMRshiftsofthecarbonatomoftheCO’swereinagreementwiththeseIR data.AnIRstudyonpyridazin-3(2H)-oneand4,5-dichloropyridazin-3(2H)-onerevealedtheirexistanceinalactam– lactim tautomeric equilibrium in dioxane. Upon dilution the equilibrium shifts to the enol form. The compounds probably appear as intermolecular cyclic dimers similar to the well-known carboxylic acid dimers <1997JST(408)467>. Konecˇny´ studied IR spectra of 5-disubstituted-amino 4-acetylamino-2-phenylpyridazin- 3(2H)-ones. The spectra displayed two NH bands in the 3240–3400cm(cid:2)1 region assigned to the intramolecular bondedNHgroups.The(cid:4)˜/CTObandsofthecarbonylgroupsoverlappedwiththe(cid:4)˜/CTNand(cid:4)˜/CTCowingto the very high absorption coefficients of the bands at 1610cm(cid:2)1. For 5-disubstituted-amino 4-amino-2-phenylpyr- idazin-3(2H)-ones,thesymmetricandasymmetric(cid:4)˜/NH areobservedinthe3370–3500cm(cid:2)1region.The(cid:4)˜/CTO 2 are shifted to higher wave numbers in comparison with 5-disubstituted-amino 4-acetylamino-2-phenylpyridazin- 3(2H)-ones <1997CCC800>. The (cid:4)˜/ SH in 2-substituted 4-alkoxy-5-mercaptopyridazin-3(2H)-ones and (cid:4)˜/ OH in 2-substituted 5-alkylthio-4-hydroxypyridazin-3(2H)-ones was also investigated <1996CCC437>. Ultraviolet (UV) spectroscopyhasbeenusedtostudytheself-associationofpyridazineinaqueoussolutionatneutral,acidic,andbasic 10 PyridazinesandtheirBenzoDerivatives Scheme1 pH<2003SAA1223>.Electronicspectraandsolvatochromicbehaviorofazocinnolines4indifferentsolventswere alsostudied(Figure5)<2004SAA103>.Forthe above-mentioned5-disubstituted-amino4-acetylamino-2-phenyl- pyridazin-3(2H)-ones, 5-disubstituted amino 4-amino-2-phenylpyridazin-3(2H)-ones, 2-substituted 4-alkoxy-5-mer- captopyridazin-3(2H)-ones,and2-substituted5-alkylthio-4-hydroxypyridazin-3(2H)-onesUVdatawerealsoprovided <1996CCC437,1997CCC800>. 8.01.4 Thermodynamic Aspects 8.01.4.1 General Physical Properties InCHEC-II(1996)<1996CHEC-II(6)1>,somestandardphysicalpropertiesofpyridazine,phthalazineandcinnoline weresummarized.Whenonecomparesthemelting(pyridazine(cid:2)8(cid:4)C,phthalazine89–92(cid:4)C,cinnoline40–41(cid:4)C)and boilingpoints(pyridazine208(cid:4)C,phthalazine315–317(cid:4)C,cinnoline114(cid:4)C/0.35mm)withthecorrespondingdideaza analogstheeffectoftheintroductionoftwoelectronegativenitrogenatomsbecomesvisible.Thenitrogenatomsare hydrogenbondacceptorswhichforpyridazine,forinstance,resultsinacompletemiscibilitywithwaterandalcohols. Melting points of pyridazin-3(2H)-one (104–105(cid:4)C), pyridazin-4(1H)-one (245–246(cid:4)C), phthalazin-1(2H)-one (183–184(cid:4)C), and cinnolin-3(2H)-one (201–203(cid:4)C) were also incorporated in CHEC-II(1996) <1996CHEC- II(6)1>. Some melting points of simple substituted pyridazin-3(2H)-ones are summarized in Table 4. A general trendisthatN-unsubstituted pyridazin-3(2H)-oneshavehigher meltingpointsthanthe corresponding substituted derivatives. Similarly, hydroxypyridazin-3(2H)-ones melt at a higher temperature than the corresponding ethers <2000HC(57)1, 2002T5645>. LogP values of substituted pyridazin-3(2H)-ones, which are important indications for their potential to be ‘drugable’, received attention. Ma´tyus studied the lipophilicity of a set of 4- and

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.