4.01 Pyrazoles L.Yet AlbanyMolecularResearch,Inc.,Albany,NY,USA ª2008ElsevierLtd.Allrightsreserved. 4.01.1 Introduction 3 4.01.1.1 SurveyofPossibleStructures 5 4.01.2 TheoreticalMethods 5 4.01.2.1 StructureandReactivityofPyrazoles 5 4.01.2.2 StructureandReactivityofIndazoles 7 4.01.3 ExperimentalStructuralMethods 8 4.01.3.1 X-RayDiffraction 8 4.01.3.2 MicrowaveandPhotoelectronSpectroscopy 9 4.01.3.3 lHand13CNMRSpectroscopy 10 4.01.3.3.1 Aromaticsystems 10 4.01.3.3.2 Nonaromaticsystems 12 4.01.3.4 I9FNMRSpectroscopy 13 4.01.3.5 15NNMRSpectroscopy 13 4.01.3.6 13Cand15NCP/MASNMRSpectroscopy 14 4.01.3.7 UVandIRSpectroscopy 15 4.01.3.8 MassSpectrometryandIonCyclotronResonanceStudies 16 4.01.4 ThermodynamicAspects 17 4.01.4.1 StabilityandStabilization 17 4.01.4.1.1 Thermochemistry 17 4.01.4.2 Tautomerism 17 4.01.4.2.1 Annular(ring)tautomerism 17 4.01.4.2.2 Substituent(chain)tautomerism 19 4.01.5 ReactivityofFullyConjugatedRings 21 4.01.5.1 ThermalandPhotochemicalReactions 21 4.01.5.2 ElectrophilicAttackatNitrogen 22 4.01.5.2.1 Protonacidsonneutralcompounds 22 4.01.5.2.2 Metalions 23 4.01.5.2.3 Azacrownethersandporphyrinogens 28 4.01.5.2.4 Alkylhalidesandrelatedcompounds:CompoundswithafreeNHgroup 28 4.01.5.2.5 Arylhalidesandrelatedcompounds 30 4.01.5.2.6 Acylhalidesandrelatedcompounds 31 4.01.5.2.7 Michaeladditiontodoubleandtriplebonds 32 4.01.5.2.8 Aminatingandnitratingagents 33 4.01.5.2.9 Alkenylation 33 4.01.5.3 ElectrophilicAttackatCarbon 34 4.01.5.3.1 Nitration 34 4.01.5.3.2 Sulfonation 34 4.01.5.3.3 Halogenation 35 4.01.5.3.4 Acylation 36 4.01.5.3.5 Amination 36 4.01.5.3.6 Diazocoupling 37 1 2 Pyrazoles 4.01.5.3.7 Reactionwithaldehydesandketones 37 4.01.5.3.8 Miscellaneous 37 4.01.5.4 NucleophilicAttackatCarbon 38 4.01.5.5 NucleophilicAttackatHydrogen 39 4.01.5.5.1 Metallationataringcarbonatom 39 4.01.5.5.2 Hydrogenexchangeatringcarboninneutralpyrazoles 40 4.01.5.6 ReactionwithRadicalsandElectron-DeficientSpecies 40 4.01.5.6.1 Carbenesandnitrenes 40 4.01.5.6.2 Freeradicalattackattheringcarbonatoms 40 4.01.5.6.3 Electrochemicalreactionsandreactionswithfreeelectrons 41 4.01.5.7 ReactionswithCyclicTransitionStates 41 4.01.6 ReactionsofNonaromaticCompounds 42 4.01.6.1 DihydroDerivatives 42 4.01.6.1.1 Aromatization 42 4.01.6.1.2 Reduction 43 4.01.6.1.3 Thermolysis,photolysis,andpyrolysis 44 4.01.6.1.4 Acylationreactions 46 4.01.6.1.5 Otherreactions 46 4.01.6.2 TetrahydroCompounds 47 4.01.7 ReactionsofSubstituentsAttachedtoRingCarbonAtoms 47 4.01.7.1 Indazoles 47 4.01.7.2 OtherC-LinkedSubstituents 48 4.01.7.2.1 Alkylgroups 48 4.01.7.2.2 Alkenylgroups 50 4.01.7.2.3 Carbonylgroupsandderivatives 50 4.01.7.3 N-LinkedSubstituents 53 4.01.7.3.1 Aminopyrazolesand-indazoles 53 4.01.7.3.2 Imines 55 4.01.7.3.3 Nitroandnitrosogroups 56 4.01.7.3.4 Azo-,diazo-,andazidopyrazoles 56 4.01.7.4 O-LinkedSubstituents 57 4.01.7.4.1 3-Hydroxypyrazoles 57 4.01.7.4.2 4-Hydroxypyrazoles 57 4.01.7.4.3 5-Hydroxypyrazoles 57 4.01.7.5 S-LinkedSubstituents 59 4.01.7.6 HalogenAtoms 60 4.01.7.6.1 Nucleophilicsubstitutionreactions:Neutralpyrazolesandindazoles 60 4.01.7.6.2 Metal–halogenexchangesubstitutionreactions 61 4.01.7.6.3 Metal-catalyzedcross-couplingreactions 62 4.01.7.6.4 Metalandmetalloid-linkedsubstituents 64 4.01.8 ReactivityofSubstituentsAttachedtoRingNitrogenAtoms 65 4.01.8.1 ArylGroups 65 4.01.8.2 AlkylGroups 66 4.01.8.3 N-AcylandCarbonylDerivatives 67 4.01.8.4 N-Oxides 68 4.01.8.5 N-AminoGroups 68 4.01.8.6 N-NitroGroups 68 4.01.9 SynthesesClassifiedbyNumberofRingAtomsinEachCompound 68 Pyrazoles 3 4.01.9.1 RingSynthesisfromNonheterocycles 68 4.01.9.1.1 Formationofonebond 68 4.01.9.1.2 Formationoftwobonds 74 4.01.10 RingSynthesisbyTransformationofAnotherRing 102 4.01.10.1 RingTransformations 102 4.01.10.1.1 Benzimidazoleandimidazolesystems 102 4.01.10.1.2 Cyclopropanes 103 4.01.10.1.3 Furandiones 103 4.01.10.1.4 Oxazolesandoxadiazoles 103 4.01.10.1.5 Oxazoliumolates 104 4.01.10.1.6 Pyranones 104 4.01.10.1.7 Pyridinesandpyridones 106 4.01.10.1.8 Sydnones 106 4.01.10.1.9 Tetrazoles 106 4.01.10.1.10 Triazines 107 4.01.10.1.11 Otherfive-memberedheterocycles 107 4.01.10.1.12 Othersix-memberedheterocycles 108 4.01.11 SynthesisofaParticularClassofCompoundsandaCriticalComparisonofthe VariousRoutesAvailable:Pyrazoles,Indazoles,andTheirDerivativesasStarting MaterialsfortheSynthesesofFusedRingSystems 109 4.01.11.1 SynthesisofFusedRingSystems 109 4.01.11.2 NucleosidesandAminoAcids 110 4.01.11.3 LabeledCompounds 111 4.01.12 ImportantCompoundsandApplications 112 4.01.12.1 PyrazolesinSupramolecularChemistry 112 4.01.12.2 PharmaceuticalsandAgrochemicals 113 4.01.12.2.1 Anti-inflammatoryagents 113 4.01.12.2.2 Cardiovascularagents 114 4.01.12.2.3 CNSapplications 115 4.01.12.2.4 Infectiousdiseases 115 4.01.12.2.5 Metabolicdiseases 116 4.01.12.2.6 Oncologyticagents 117 4.01.12.2.7 Estrogenreceptor 118 4.01.12.2.8 Agriculturaluses 118 4.01.12.3 OtherApplications 119 4.01.12.3.1 Pyrazoleligandapplications 119 4.01.12.3.2 Pyrazolesascatalysts 119 4.01.12.3.3 Pyrazolesasreagents 120 4.01.12.3.4 Metalpyrazolecomplexes 121 4.01.12.3.5 Pyrazoleindustrialapplications 121 4.01.12.4 NaturalProducts 121 4.01.13 FurtherDevelopments 121 References 122 4.01.1 Introduction Five-memberedringsystemscontainingtwodoublebondsandtwonitrogenatomsadjacenttoeachotherarecalled pyrazoles. Previous chapters on pyrazoles have been presented in CHEC(1984), covering the literature up to 1981 <1984CHEC(5)167>, and CHEC-II(1996), covering the literature from 1982 to 1995 <1996CHECII(3)1>. This chapter covers the literature on pyrazoles during the 10-year period, 1996–2006. The previous two chapters of this seriesonpyrazolesdealtmorewiththeoretical,experimentalstructural,andthermodynamicmethods,andlesswiththe 4 Pyrazoles reactivity,synthesis,andapplicationsofpyrazoles.Duringthelast10years,morereportshaveappearedonthesynthesis andreactivityofpyrazoleringsystems.Furthermore,themedicinalchemistryapplicationsofpyrazolesandfused-ring systemshavefoundnumerousapplicationsindrugdiscovery.Thischapterfocusesonthesecurrentdevelopments. Manyreviewshavebeenwrittenonthesynthesisandreactivityofpyrazoles(Table1)aswellasreviewswhere pyrazolesarepresentedinthecontextofothertopics(Table2). Table1 Reviewsonpyrazolesandrelatedtopics Mainauthor Title Reference A.P.Sadimenko OrganometalliccomplexesofheterocyclesII.Complexesofpyrazoles 1996CCR247 K.Makino Synthesisofpyrazoles 1998JHC489 S.A.Shevelev Advancesinnitropyrazolechemistry 1998RJO1071 K.Makino Synthesisofpyrazolesandcondensedpyrazoles 1999JHC321 K.N.Zelenin 5-Hydroxy-4,5-dihydropyrazoles 1998THS(2)207 C.Pettinari Organotin(IV)derivativesofimidazoles,pyrazolesandrelated 1999MGM661 pyrazolylandimidazolylligands R.Mukherjee Coordinationchemistrywithpyrazole-basedchelatingligands: 2000CCR151 Molecularstructuralaspects A.M.Pinchuk C-Phosphorylatedazoles 2001PJC1137 S.F.Vasilevsky Synthesisandpropertiesofacetylenicderivativesofpyrazoles 2002AHC1 B.Stanovnik Productclass1:Pyrazoles 2002SOS(12)15 C.Kashima SyntheticutilityofN-acylpyrazoles 2003H(60)437 J.W.Pavlik Photochemicalisomerizationsofsomefive-memberedheteroaromatic 2003PHC(15)37 azoles G.Varvounis Pyrazol-3-ones 2004AHC141 G.I.Yranzo Flashvacuumpyrolysisofisoxazoles,pyrazolesandrelatedcompound 2004COR1071 D.Kumar Structuralrevisioninpyrazolechemistry 2004H(63)145 Table2 Reviewsonpyrazolesdiscussedinthecontextofothertopics Mainauthor Title Reference S.A.Lang Fivememberedringsystems:WithmorethanoneNatom 1996PHC(8)146 M.A.Walters Fivememberedringsystems:WithmorethanoneNatom 1997PHC(9)148 K.Turnbull Fivememberedringsystems:WithmorethanoneNatom 1998PHC(10)153 K.Turnbull Fivememberedringsystems:WithmorethanoneNatom 1999PHC(11)163 E.S.ElAshry Carbohydratehydrazonesandosazonesasorganicrawmaterials 2000COR609 fornucleosidesandheterocycles L.Yet Fivememberedringsystems:WithmorethanoneNatom 2000PHC(12)161 L.Yet Fivememberedringsystems:WithmorethanoneNatom 2001PHC(13)167 L.Yet Fivememberedringsystems:WithmorethanoneNatom 2002PHC(14)180 G.Stajer TheretroDiels–Alderreactionasavaluabletoolforthe 2003COR1423 synthesisofheterocycles L.Yet Fivememberedringsystems:WithmorethanoneNatom 2003PHC(15)206 A.Rybar Annulatedheterocyclo-purines.1.Fusedfive-membered 2004AHC85 heterocyclo-purinediones,–purinones,and–purineimines M.A.P.Martins 4-Alkoxy-1,1,1-trichloro-3-alken-2-ones:Preparationand 2004CSY391 applicationsinheterocyclicsynthesis B.C.Sekhar Cyclic1,3-dionesandtheirderivativesasversatilereactive 2004JHC807 intermediatesinthesynthesisofcondensedfusedring heterocycles L.Yet Fivememberedringsystems:WithmorethanoneNatom 2004PHC(16)198 L.Yet Fivememberedringsystems:WithmorethanoneNatom 2005PHC(17)172 G.Molteni Stereoselectivecycloadditionsofnitriliminesasasourceof 2005H(65)2513 enantiopureheterocycles G.Molteni 1,3-Dipolarcycloadditionsinaqueousmedia 2006H(68)2177 P.Stannety Cross-couplingreactionsonazoleswithtwoandmore 2006EJO3283 heteroatoms L.Yet Fivememberedringsystems:WithmorethanoneNatom 2006PHC(18)218 Pyrazoles 5 4.01.1.1 Survey of Possible Structures Pyrazole1isanaromaticmoleculeand,likeitsstructuralisomerimidazole,containsapyrrole-likeandapyridine-like Natom,butinthe1-and2-positions(1,2-diazole).Thissurveyofpossiblestructuresfollowstheconventionadopted inCHEC(1984)<1984CHEC(5)167>.Aromaticcompoundswithtwodoublebondsincludethecorestructuressuch as pyrazole 1, indazole 2, and isoindazole 3 along with their nonaromatic isomers, pyrazolenine or 3H-pyrazole 4, isopyrazole or 4H-pyrazole 5, and 1H-pyrazol-2-ium salts 6. Other pyrazole structures containing carbonyl groups include1H-pyrazol-5(4H)-one7,1H-pyrazol-3(2H)-one8,3H-pyrazol-3-one9,and4,5-dihydro-3H-pyrazol-3-one10. Pyrazolinessuchas4,5-dihydro-3H-pyrazoleor(cid:2)1-pyrazoline11,4,5-dihydro-1H-pyrazoleor(cid:2)2-pyrazoline12,and 2,3-dihydro-1H-pyrazole or (cid:2)3-pyrazoline 13 are also represented. Pyrazolidine 14 and pyrazolidin-3-one 15 are representativestructureswithnoringdoublebonds.Allofthesestructurescanhavesubstitutiononanyofthecarbon atoms.Manyotherstructuressuchasthosewithfusedpyrazoleringsarealsopossible,butthosementionedaboveare themostcommoncoretypesdiscussedinthischapter. 4.01.2 Theoretical Methods 4.01.2.1 Structure and Reactivity of Pyrazoles N-UnsubstitutedpyrazolescanhaveN–H(cid:2)(cid:2)(cid:2)Nhydrogenbondspresentintheircrystals,whichcanleadtoatleastsix motifs such as monomers, dimers, trimers, tetramers, hexamers, and catemers. Hydrogen-bonding motifs for pyra- zoleshavebeenexaminedintheCambridgeStructuralDatabase(CSD)<2004STC173>.Theaccessiblesurfaceof theN-atomshasbeenfoundtobeusefulasadiscriminatortodividestructuresintodimerandcatemermotifs.Low accessibilityfavorsdimersandtetramersandhighvaluesfavorcatemersandtrimers.Empiricalrulesweresuccess- fullyappliedtopredictthemotifsofeightnewstructuresinthesubsequentreleaseoftheCSD.AsearchintheCSD forNH-pyrazoleslackingotherhydrogen-bonddonorandacceptorsitesidentified49compoundsthatcrystallizedin 47 structures forming dimers (16), tetramers (13), trimers (8), a hexamer (1), and catemers (10) using N–H(cid:2)(cid:2)(cid:2)N hydrogen bonds <2006ARK15>.These structures weredivided intotwo classes (dimers and tetramers vs.trimers and catemers) using the accessible surface to an atom with good results. The method has been extended to new pyrazolesbymeansoftheoreticalcalculations(B3LYP/6-31G*)ofthegeometryofthemonomers.Aspectslikethe conformation of phenyl substituents, the additivity of substituent effects, and buttressing effects have been approachedtheoretically. 6 Pyrazoles Thesupramolecularstructureof1H-pyrazolesinthesolidstatewasinvestigatedbycrystallographicandabinitio studies <2000AXB1018>. Harmonic force fields were calculated at the corresponding optimized geometry for pyrazole at the Hartree–Fock (HF), B3LYP, MP2, CCSD (coupled-cluster singles and doubles), and CCSD(T) (coupledclusterwithperturbativetriples)levelsusingthe6-31G* basissetandattheHFandB3LYPlevelsusing the ccpVTZ basis set <2003SAA2009>. Ab initio coupled gauge-independent atomic orbital (GIAO) calculations werecarriedouton211-substitutedpyrazolesusingfourdifferentabinitiomethodswhichledtothefinalselectionof thehybridB3LYP/6-311þG(2d,p)//B3LYP/6-31þG(d)basisset<1998JMT(453)255>.Comparisonwithexperimen- talchemicalshiftsinsolution(takingintoaccountthecalculatedshieldingsofthecorrespondingreferences)showed anexcellentagreementbetweenbothsets,allowingforafactorofproportionalityofabout0.96.Theinfrared(IR) spectra and quantum-mechanical calculations ofvibrational spectra and structure of pyrazole and 3,5-dimethylpyr- azole in solution, gas phase, and solid state have been investigated over a wide range of concentrations and temperatures <2003JMT(660)25>. It was found that in the gas phase, both pyrazole and 3,5-dimethylpyrazole exist in an equilibrium between monomers, dimers, and trimers. In solution, the equilibrium between monomers and trimers dominated and no bands which could be attributed to dimers were detected. 3,5-Dimethylpyrazole retainedthetrimerstructureinthesolidstate,whileinthecaseofpyrazole,formationofthecrystalprovidedanother typeofassociation.Geometricalandspectralcharacteristicsofdimersandtrimers,obtainedbyabinitiocalculations, werepresentedandcomparedwithexperimentaldata.Moleculardynamicsoftheself-organizingstronghydrogen- bonded3,5-dimethylpyrazolewasstudiedbyquasi-elasticneutronscattering(QENS)<2006NJC425>. Hindered pyramidal inversion and restricted rotation in N-propyl-N-(4-pyridyl)-1-amino-1H-pyrazoles 16 were studied by dynamic nuclear magnetic resonance (NMR) spectroscopy and molecular modeling methods <2000T1739>.Acoupled-clusterstudyofthestructureandvibrationalspectraofpyrazolehasbeenreported.The structure of 5-tert-butyl-4-nitro-1H-pyrazol-3-ol 17 consisted of molecules that pack in a linear hydrogen-bonded ribbon motif <2005AXEo2347>. This hydrogen-bonding arrangement was constructed through two dimer forma- tions,onethatisatypicalofpyrazoles(N–H(cid:2)(cid:2)(cid:2)N)andtheotherviaaninteractionfromthehydroxygrouptooneof thenitrooxygenatoms.Themolecularstructureofanovelmonohydrated3-p-nitrophenylpyrazolewasfoundtoexist as the 3-tautomer 18 rather than the corresponding 5-tautomer 19 using NMR spectroscopy, single crystal X-ray diffraction,andabinitiocalculations(Equation1)<2003JMT(650)223>. Pyrazoles 7 ð1Þ C–HandN–Hbond-dissociationenergies(BDEs)ofpyrazolewerecalculatedusingcompositeabinitioCBS-Q, G3,andG3B3methods(Table3)<2003JPO883>.ItwasfoundthatallthesemethodsprovidedverysimilarBDEs, despitethefactthatdifferentgeometriesanddifferentproceduresintheextrapolationtocompleteincorporationof electroncorrelationandcompletebasissetlimitwereused. Table3 Bonddissociationenergiesofpyrazole(kcalmol(cid:3)1) Bond CBS-Q G3 G3B3recommended B3LYP Charge Spin Bondangle((cid:4)) N(1)–H 112.0 111.3 109.2 107.6 0.401 113.3 C(3)–H 118.7 118.7 117.8 115.5 0.201 0.967 112.1 C(4)–H 122.6 122.2 121.0 118.9 0.221 0.953 104.5 C(5)–H 121.1 121.1 119.9 117.9 0.210 0.948 106.1 4.01.2.2 Structure and Reactivity of Indazoles Nuclearquadrupoleresonance(NQR)frequenciesweredeterminedonthe35Clisotopeforseveralchloroindazoles andfortwochloroindazolenucleosidesatliquidnitrogentemperature<2000JMT(530)217>.Theinfluenceofthe site of substitution and type of substituent on the resonance frequency was analyzed and the electron density distribution and electrostatic potential in the molecules were calculated by the B3LYP/6-31G(p) method and the resultswerecorrelatedwithexperimentaldata. Theaqueous-phasephysicochemicalpropertiesofsome3-substitutedindazoles(H,Me,Br,Cl)werecomputed usingsemi-empirical methodsandtheresultsobtainedwereevaluatedbysearchingforapossiblecorrelationwith the previously obtained experimental properties <2002JMT(588)145>. The aqueous-phase geometries, relative stabilities, acidity constants, tautomerism, proton affinities (PAs) and dipole moments for the tautomeric forms of some3-substituted indazolesand theirfixedforms(modelcompoundsinwhichprotonmigration iseliminatedby replacing the mobile hydrogen atom with a methyl group) were calculated with full geometry optimization using AM1, PM3, and modified neglect of diatomic overlap (MNDO) methods. The results of aqueous-phase semi- empirical calculations indicate that 1H-form 20 of the studied molecules is more stable than the 2H-form 21 (Equation2). 8 Pyrazoles ð2Þ Ab initio and density functional theory (DFT) methods have been used to study the five tautomeric forms of indazole in gaseous and aqueous phases <2004JMT(686)83>. The tautomers in the gas phase were optimized at MP2/6-311G(2d,2p),B3LYP/6-311G(2d,2p),andB3PW91/6-311G(2d,2p)levelsoftheory.Computationalstudieson the three tautomeric forms of four 1,5,6,7-tetrahydro-4H-indazol-4-ones, 1,5,6,7-tetrahydro-4H-indazol-4-one, 6,6- dimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one, 3-methyl-1,5,6,7-tetrahydro-4H-indazol-4-one, and 3,6,6-trimethyl- 1,5,6,7-tetrahydro-4H-indazol-4-one,wereperformedatdifferentlevels,rangingfromsemi-empiricalAM1,abinitio HF/6-31G* and HF/6-31G**, to B3LYP/6-31G** density functional calculations <2006MOL415>. These calcula- tionswereusedtoestablishthemoststabletautomer,whichinallcaseswasinagreementwiththeexperimentaldata. 4.01.3 Experimental Structural Methods 4.01.3.1 X-Ray Diffraction Thestructureof3(5)-phenyl-4-bromo-5(3)-methylpyrazoleinthesolidstatewasdeteminedbyX-raycrystallography andshowedbothtautomerstobepresentinthecrystals,formingcyclictetramers(Equation3)<1999JMT(484)197>. The molecular and crystal structure of 3(5)-nitropyrazole was determined by X-ray analysis <1997JPO637>. The triclinic unit cell contained 12 molecules which form four hydrogen-bonded (N–H(cid:2)(cid:2)(cid:2)N) trimers. Each trimer comprised a pseudo-ring in a flattened envelope, distorted towards a chair conformation. The crystal packing consisted of layers formed by centrosymmetric-related trimers joined through C–H(cid:2)(cid:2)(cid:2)O interactions. The X-ray molecularstructureof4-methylpyrazole22showedittoexistasahydrogen-bondedtrimerinthesolidstateat100K <1999NJC237>. The X-ray molecular structure of the important molecule 3,5-bis(trifluoromethyl)pyrazole 23, determinedat120K,revealedcrystalsbelongingtothetriclinicP1spacegroup<1999NJC1231>.Thecompound formedtetramersthroughN–H(cid:2)(cid:2)(cid:2)Nhydrogenbonds.Someprotondisorderwasnecessarytoexplainthegeometric features of the monomers. The X-ray crystal structure of 1H-pyrazole-3-(N-tert-butyl)-carboxamide 24 was deter- mined<2005MRC89>.Inthesolidstate,the13Cand15Ncross-polarization/magicanglespinning(CP/MAS)NMR spectra corresponded to this tautomer. In solution, both tautomers were present in a ratio that depended on the temperature (at 293K, 90% 3-substituted/10% 5-substituted). Some unusual 1H,1H-couplings involving the NH proton were observed. DFT (GIAO) calculations were carried out. The conformation and distortion of flexible pyranoidringsin1-(2-hydroxy-iminopyranosyl)pyrazolecarbohydrateswerediscussedinthelightofcrystalstructure analysisofninecompoundsandtheresultsofsemi-empiricalcalculations of16modelcompoundswerepresented <1997JMT(436)173>. Conformational similarities of several modified sugars studied by X-ray methods suggested that the presence of intramolecular C–H(cid:2)(cid:2)(cid:2)N hydrogen bonds between the aglycone (pyrazole ring) and axial hydrogenatomsatC-3and/orC-5.ResultsfromthePM3methodshowedthatringpuckeringwasalsodependent onweakinteractionsbetweentheaglyconegroupandthepyranoidring.Conclusionsfrombothmethodsconverge. The crystal structures of two NH-pyrazole derivatives forming intermolecular N–H(cid:2)(cid:2)(cid:2)N hydrogen bonds were reported: 5-methyl-4-(3-methylpyrazol-5-yl)pyrazol-3-ol and 3-methyl-5-dihydro-1H-naphtho[1,2-d]pyrazole hemi- hydrochloride<1999AXB985>.Otherstructuresweresurveyedinordertoobtainadeeperinsightintothewaysin whichNH-pyrazolesself-assemblebymeansofintermolecularN–H(cid:2)(cid:2)(cid:2)Nhydrogenbondsinmolecularcrystals.The single crystal X-ray structures of 3(5)-(2,5-dimethoxyphenyl)pyrazole and the hemihydrate of 3(5)-(3,4-dimethoxy- phenyl)pyrazole have been determined (Equation 4) <1996AXB746>. The first compound exists purely as the 5- substitutedprototropomerinthecrystal;thepyrazolepyrrolicN–Hprotonisinvolvedinathree-wayhydrogenbond, involvinganintramolecularcontactwithamethoxyoxygendonorandanintermolecularinteractiontothepyridinic N-atomofaneighboringmolecule,formingdiscretehydrogen-bondeddimers.Inthesecondmolecule,however,the Pyrazoles 9 pyrrolic proton is disordered over both N-1 and N-2 via hydrogen bonding to the solvent water molecule. The structureof3(5)-[(4-diphenylphosphinoyl)phenyl]pyrazolehasbeendeterminedbyX-raycrystallographyasthe1H- 3-substitutedtautomer(monoclinic,spacegroupP21/c)<2003ARK209>. ð3Þ ð4Þ X-Raycrystalstructuresof1-(nitrophenyl)-(cid:2)2-pyrazolines25and26havebeendetermined<2004AJC1103>.The differencesinconformationbetweenbothmoleculesandbetweenthesolidandgasphaseswereexplainedintermsof steric effects. The structure of 1-formyl-3-phenyl-(cid:2)2-pyrazoline 27 in the gas phase (DFT calculations), solution (NMR), and solid state (X-ray crystallography) was evaluated <2004JMT(689)251>. The crystal and molecular structureof1,1,3-trimethyl-(cid:2)2-pyrazoliniumperchlorate28hasbeendeterminedandcomparedwiththoseofother pyrazoliniumsalts(both1,1-and1,2-disubstituted)<2004SPE605>.Reported13Cand15Nchemicalshiftsforaseries ofrelatedpyrazolineshavebeencomparedwithGIAO/DFTcalculations,withexcellentagreement.Thecorrelation ofthebiologicalpropertiesofpyrazolineswiththoseoftheperchlorateanioninthesamemoleculewasalsodiscussed. X-Raycrystallographyshowedthat7-nitroindazolecrystallizedasanN(1)–Htautomerdimerandadoptedaplanar conformationassistedbyintramolecularhydrogenbonding<2000AXC474>. 4.01.3.2 Microwave and Photoelectron Spectroscopy The electronicstructureand gas-phasethermolysisof4-substituted3,3,5,5-tetramethyl-3,5-dihydro-4H-pyrazoleshas been studied by photoelectron spectroscopy and the first evidence for an alkylideneselenirane was obtained <1996T1965>. The 351.1nm photoelectron spectrum of the 1-pyrazolide anion has been measured <2006PCA8457>.The1-pyrazolideion29isproducedbyhydroxidedeprotonationofpyrazoleinaflowingafterglow ionsourceandasmallamountofthe5-pyrazolideion30wasalsodetectedandstudiedbyphotoelectronspectroscopy. 10 Pyrazoles 4.01.3.3 lH and 13C NMR Spectroscopy 4.01.3.3.1 Aromaticsystems The1Hand13CNMRspectraofpyrazolesderivedfromchiralcyclohexanones(3-methylcyclohexanone,menthone, pulegone, dihydrocarvone, and carvone) were measured and assigned <2002H(57)307>. Thirteen C- and N-tri- methylsilylpyrazoles werestudiedby1Hand13CNMRspectroscopy<1998MRC110>.Acompletemodelforthe predictionof1Hand13CNMRchemicalshiftsandtorsionalanglesinphenyl-substitutedpyrazoleshasbeenreported <2001T4179>. A correlation between torsion angles calculated by molecular mechanics and differences in 13C chemical shifts of the ortho- and meta-carbon atoms of the phenyl groups in 29 N-phenyl-substituted pyrazole derivatives and 11 C-phenyl-substituted pyrazoles has been identified. Three N-substituted pyrazoles and three N-substituted indazoles, 1-(4-nitrophenyl)-3,5-dimethylpyrazole 31, 1-(2,4-dinitrophenyl)-3,5-dimethylpyrazole 32, 1-tosylpyrazole 33, 1-p-chlorobenzoylindazole 34, 1-tosylindazole 35, and 2-(2-hydroxy-2-phenylethyl)indazole 36, havebeenstudiedbyNMRspectroscopyinsolution(1H,13C,15N)andinthesolidstate(13C,15N)<2006MRC566>. 3-Methyland5-methyltautomersof3(5)-methylpyrazoleinaratioof54:46werefoundinmethanolbytheuseof13C NMRspectroscopy<1998MRC110>.Thechemicalshiftsandcouplingconstantsof23pyrazolesbearingdifferent substitutents at position 1 have been studied by 1H, 13C, and 15N NMR spectroscopy in solution (Table 4) <1998H(47)301>. Variable-temperature 1H NMR studies of a range of 1,3,5-trisubstituted-4-nitrosopyrazoles (R1,R2,R3¼Me,CF ,Ph,ort-Bu)haveledtotheidentificationofindividualrotationalisomersatlowtemperatures 3 arisingfromtheslowingdownoftherotationofthenitrosofunctionwithrespecttothepyrazolering(Equation5) <1997J(P2)721>.ThecouplingconstantsofeightN–R-pyrazoles37havebeencalculatedandcomparedwiththeir experimentalvalues<2005MRC985>.Theagreementwasgoodandcouldbeusedtoestimatenewcouplings;the wholecollectionwasstatisticallyanalyzed.1-Hydroxymethylindazole38hasbeenstudiedinsolutionby1H,13C,and 15NNMRspectroscopy<2004JHC285>.