ebook img

Composition formulas of Bessel-Struve kernel function PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Composition formulas of Bessel-Struve kernel function

COMPOSITION FORMULAS OF BESSEL-STRUVE KERNEL FUNCTION K.S NISAR, S.R MONDAL, AND P.AGARWAL Abstract. The generalized operators of fractional integration involving Appell’s func- tion F3(.) due to Marichev-Saigo-Maeda,is applied to the Bessel Struve kernel function Sα(λz),λ,z C to obtain the results in terms of generalized Wright functions.The ∈ pathway integral representations Bessel Struve kernel function and its relation between many other functions also derived in this study. 6 1 0 2 1. Introduction n The fractional calculus is one of the most rapidly growing subject of applied mathe- a J matics that deals with derivatives and integrals of arbitrary orders. The applications of 1 fractional integral operator involving various special functions has found in various sub 3 fields such as statistical distribution theory, control theory, fluid dynamics, stochastic ] dynamical system, plasma, image processing, nonlinear biological systems, astrophysics, A and in quantum mechanics (see [1–4]). C The influence of fractional integral operators involving various special functions in frac- . h tional calculus is very important as its significance and applications in various sub-fields t a of applied mathematical analysis. Many studies related to the fractional calculus found m in the papers of Love [5], McBride [6], Kalla [7, 8], Kalla and Saxena [9, 10], Saigo [11– [ 13] , Saigo and Maeda [14], Kiryakova [21] gave various applications and extensions of 1 hypergeometric operators of fractional integration. A comprehensive explanation of such v operators can be found in the research monographs by Miller and Ross [20] and Kiryakova 9 7 [21]. 2 A useful generalization of the hypergeometric fractional integrals, including the Saigo 0 operators ([11–13]), has been introduced by Marichev [22] (see details in Samko et al. 0 . [25], p. 194) and later extended and studied by Saigo and Maeda ([14], p.393) in term of 2 0 any complex order with Appell function F (.) in the kernel, as follows: 3 6 1 Let α, α, β, β , γ C and x > 0, then the generalized fractional calculus operator : ′ ′ v ∈ involving the Appell functions, or Horn’s function are defined as follows: i X r a (1.1) Iα,α′,β,β′,γf (x) = x−α x(x t)γ 1t α′F α,α,β,β ;γ;1 t,1 x f(t)dt, 0,+ Γ(γ) − − − 3 ′ ′ − x − t (cid:16) (cid:17) Z0 (cid:18) (cid:19) and (1.2) Iα,α′,β,β′,γf (x) = x−α′ ∞(t x)γ 1t αF α,α,β,β ;γ;1 t,1 x f(t)dt, 0, Γ(γ) − − − 3 ′ ′ − x − t (cid:16) − (cid:17) Zx (cid:18) (cid:19) 2000 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18. Key words and phrases. Bessel Function, Struve function, Bessel Struve kernel function, Pathway integral representations. 1 2 K.S NISAR,S.R MONDAL,AND P.AGARWAL with Re(γ) > 0. The generalized fractional integral operators of the type (1.1) and (1.2) has been introduced by Marichev [22] and later extended and studied by Saigo and Maeda [14].This operator together known as the Marichev-Saigo-Maeda operator. For the definition of the Appell function F (:) the interested readers may refer to the monograph 3 by Srivastava and Karlson [15] (see also Erd´elyi et al. [16] and Prudnikov et al. [17]). The fractional integral operator has many interesting application in various sub-fields in applicable mathematical analysis For example, [18] has applications related to certain class of complex analytic functions. The results given in [19, 20, 24, 42] can be referred for some basic results on fractional calculus. Following two results given by Saigo et. al. [14, 23] are needed in sequel. Lemma 1. Let α,α,β,β ,γ,ρ C be such that Re(γ) > 0 and ′ ′ ∈ Re(ρ) > max 0,Re(α α β γ),Re(α β ) . ′ ′ ′ { − − − − } Then there exists the relation I0α,,+α′,β,β′,γ tρ−1 (x) = Γ ρρ,+β , ρρ++γγ −αα−αα′,−β, ρρ++βγ′ −αα′ β xρ−α−α′+γ−1, ′ ′ ′ (cid:20) − − − − (cid:21) (cid:16) (cid:17) where a, b, c Γ(a)Γ(b)Γ(c) Γ = . d, e, f Γ(d)Γ(e)Γ(f) (cid:20) (cid:21) Lemma 2. Let α,α,β,β ,γ,ρ C be such that Re(γ) > 0 and ′ ′ ∈ Re(ρ) < 1+min Re( β),Re(α+α γ),Re(α+β γ) . ′ ′ { − − − } Then there exists the relation I0α,,α′,β,β′,γ tρ−1 (x) = Γ 11−ρρ,−1 γ +ρ+α+α+α′,α1+−βρ++αβ +βγ′,,11−ρρ+−αβ β xρ−α−α′+γ−1. − ′ ′ (cid:20) − − − − − (cid:21) (cid:16) (cid:17) 2. Representations in term of generalized Wright functions The generalized Wright hypergeometric function ψ (z) which is defined by the series p q (2.3) ψ (z) = ψ (ai,αi)1,p z = ∞ pi=1Γ(ai +αik)zk. p q p q (b ,β ) q Γ(b +β k) k! (cid:20) j j 1,q (cid:12) (cid:21) k=0 Qj=1 j j (cid:12) X Here a ,b C, and α ,β R (i = 1,2,.(cid:12)..,p; j =Q1,2,...,q). Asymptotic behavior of i j i j (cid:12) this functio∈n for large valu∈es of argument of z C were studied in [26] and under the ∈ condition q p (2.4) β α > 1 j i − − j=1 i=1 X X in [27, 28]. Properties of this generalized Wright function were investigated in [29–31]. In particular, it was proved [29] that ψ (z), z C is an entire function under the condition p q ∈ (2.4). Interesting results related to generalized Wright functions are also given in [32]. For proceeding the coming subsections we nee to recall the following definitions. The Bessel COMPOSITION FORMULAS OF BESSEL-STRUVE KERNEL FUNCTION 3 and modified Bessel function of first kind , the Struve function H (z) and modified Struve v function L (z) possess power series representation of the form [33] v ∞ ( 1)k z 2k+υ (2.5) J (z) = − 2 , υ Γ(k +υ +1)k! k=0 (cid:0) (cid:1) X z 2k+υ ∞ (2.6) I (z) = 2 υ Γ(k +υ +1)k! k=0 (cid:0) (cid:1) X k z υ+1 ∞ ( 1) z 2k (2.7) H (z) = − υ 2 Γ k + 3 Γ k +υ + 1 2 (cid:16) (cid:17) Xk=0 2 2 (cid:16) (cid:17) (cid:0) (cid:1) (cid:0) (cid:1) and z υ+1 ∞ 1 z 2k (2.8) L (z) = υ 2 Γ k + 3 Γ k +υ + 1 2 (cid:16) (cid:17) Xk=0 2 2 (cid:16) (cid:17) (cid:0) (cid:1) (cid:0) (cid:1) The purpose of this work is to investigate compositions of integral transforms (1.1) and (1.2) with the Bessel Struve kernel function S (λz) defined for z,λ C. The Bessel- α Struve kernel S (λz),λ C, [34] which is unique solution of the init∈ial value problem α l u(z) = λ2u(z)withthe∈initialconditionsu(0) = 1andu′(0) = λΓ(α+1)/(√πΓ(α+3/2)) α is given by S (λz) = j (iλz) ih (iλz), z C where j and h are the normalized α α α α α − ∀ ∈ Bessel and Struve functions. Moreover, the Bessel-Struve kernel is a holomorphic function on C C and it can be × expanded in a power series in the form ∞ (λz)nΓ(α+1)Γ n+1 (2.9) S (λz) = 2 , α √πn!Γ n +α+1 n=0 2 (cid:0) (cid:1) X (cid:0) (cid:1) Now, we derive the following theorems, Theorem 1. Letα,α,β,β ,γ,ρ,p,b,c,λ,ν C . SupposethatRe(γ) > 0 andRe(ρ+n) > ′ ′ ∈ max 0,Re(α+α +β γ),Re(α β ) . Then ′ ′ ′ { − − } Iα,α′,β,β′,γtρ 1S (λt) (x) = xρ+γ α α′ 1Γ(ν +1) 0,+ − ν − − − √π (cid:16) 1, 1 ,(ρ(cid:17),1), ρ+γ α α′ β,1 , ρ+β′ α′,1 ×4 Ψ4 ν +12, 12 , ρ+β′,1 , ρ−+γ− α −α′,1 , ρ+γ −α′ β,n | xλ (cid:20) (cid:0) 2 (cid:1) (cid:0) − − (cid:1) (cid:0) − −(cid:1) (cid:21) Proof. Using (1(cid:0).1) and(cid:1)(2.(cid:0)9), (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Iα,α′,β,β′,γtρ 1S (λt) (x) 0,+ − ν (cid:16) n (cid:17) = Iα,α′,β,β′,γ ∞ (λ) Γ(ν +1)Γ((n+1)/2)tρ+n 1 (x) 0,+ √πn!Γ(n/2+ν +1) − ! n=0 X 4 K.S NISAR,S.R MONDAL,AND P.AGARWAL By changing the order of integration and summation, Iα,α′,β,β′,γtρ 1S (λt) (x) 0,+ − ν (cid:16) n (cid:17) = ∞ (λ) Γ(ν +1)Γ((n+1)/2)(Iα,α′,β,β′,γtρ+n 1)(x). √πn!Γ(n/2+ν +1) 0,+ − n=0 X Hence replacing ρ by ρ+n in Lemma 1 , we obtain Iα,α′,β,β′,γtρ 1S (λt) (x) 0,+ − ν (cid:16)∞ Γ(ν +1)Γ n+1 (cid:17)λn = 2 √πn!Γ(n/2+ν +1) n=0 (cid:0) (cid:1) X ′ ′ ′ Γ(ρ+n)Γ ρ+n+γ α α β Γ ρ+n+β α ′ − − − − xρ+n+γ α α 1 ×Γ(ρ+n+β′)Γ(ρ+n+γ α α′)Γ(ρ+n+γ α′ β) − − − (cid:0) − − (cid:1) (cid:0) − −(cid:1) ∞ Γ(ν +1)Γ n 1 +1 λn = 2 − 2 √πn!Γ(n/2+ν +1) n=0 (cid:0) (cid:1) X ′ ′ ′ Γ(ρ+n)Γ ρ+n+γ α α β Γ ρ+n+β α ′ − − − − xρ+n+γ α α 1 ×Γ(ρ+n+β′)Γ(ρ+n+γ α α′)Γ(ρ+n+γ α′ β) − − − (cid:0) − − (cid:1) (cid:0) − −(cid:1) ′ = xρ+γ−α−α −1Γ(ν +1) ∞ Γ n2 + 21 √π Γ(n/2+ν +1) n=0 (cid:0) (cid:1) X Γ(ρ+n)Γ ρ+n+γ α α′ β Γ ρ+n+β′ α′ (xλ)n − − − − ×Γ(ρ+n+β′)Γ(ρ+n+γ α α′)Γ(ρ+n+γ α′ β) n! (cid:0) − − (cid:1) (cid:0) − −(cid:1) ′ xρ+γ α α 1 − − − = Γ(ν +1) √π 1, 1 ,(ρ,1), ρ+γ α α′ β,1 , ρ+β′ α′,1 ×4Ψ4 ν +12, 12 , ρ+β′,1 , ρ−+γ− α −α′,1 , ρ+γ −α′ β,n |λx (cid:20) (cid:0) 2 (cid:1) (cid:0) − − (cid:1) (cid:0) − −(cid:1) (cid:21) (cid:3) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) Theorem 2. Letα,α,β,β ,γ,ρ,p,b,c,λ,ν C . SupposethatRe(γ) > 0 andRe(ρ n) < ′ ′ ∈ − 1+min Re( β),Re(α+α γ),Re(α+β γ) . Then ′ ′ { − − − } Iα,α′,β,β′,γtρ 1S λ (x) 0, − ν t − (cid:18) (cid:18) (cid:19)(cid:19) ′ xρ α α +γ 1 − − − = Γ(ν +1) √π 1, 1 , 1 ρ γ +α+α′,1 , 1 ρ+α+β′,1 , 1 ρ β′,1 ×4 Ψ4 ν +1,21 2,(1 −ρ,1)−, 1 ρ+α+α′ +−β +β′ γ,1 ,(1 −ρ+−n+α+β,1) |λx (cid:20) (cid:0) 2 (cid:1) (cid:0)− − (cid:1) (cid:0) − (cid:1) (cid:0)− (cid:1) (cid:21) Proof. Us(cid:0)ing (1.2)(cid:1)and (2.9), an(cid:0)d then changing the order of in(cid:1)tegration and summation, n Iα,α′,β,β′,γtρ 1S λ (x) = ∞ (λ) Γ(ν +1)Γ((n+1)/2) Iα,α′,β,β′,γtρ n 1 (x). 0, − ν t √πn!Γ(n/2+ν +1) 0, − − − − (cid:18) (cid:18) (cid:19)(cid:19) Xn=0 (cid:16) (cid:17) COMPOSITION FORMULAS OF BESSEL-STRUVE KERNEL FUNCTION 5 using Lemm 2, we obtain n ∞ (λ) Γ(ν +1)Γ((n+1)/2) = √πn!Γ(n/2+ν +1) n=0 X ′ ′ Γ 1 ρ n γ +α+α Γ 1 ρ n+α+β Γ(1 ρ n β) ′ − − − − − − − − xρ n α α +γ 1 ×Γ(1 ρ n)Γ(1 ρ n+α+α′ +β +β′ γ)Γ(1 ρ n+α+β) − − − − (cid:0)− − − − (cid:1) (cid:0) − (cid:1) − − ′ xρ α α +γ 1Γ(ν +1)Γ((n+1)/2) − − − = √π Γ(n/2+ν +1) Γ 1 ρ+n γ +α+α′ Γ 1 ρ+n+α+β′ Γ(1 ρ+n β) (xλ)n − − − − − ×Γ(1 ρ+n)Γ(1 ρ+n+α+α′ +β +β′ γ)Γ(1 ρ+n+α+β) n! (cid:0)− − (cid:1) (cid:0) − (cid:1) − ′ xρ α α +γ 1 − − − = Γ(ν +1) √π 1, 1 , 1 ρ γ +α+α′,1 , 1 ρ+α+β′,1 , 1 ρ β′,1 ×4Ψ4 ν +1,21 2,(1 −ρ,1)−, 1 ρ+α+α′ +−β +β′ γ,1 ,(1 −ρ+−n+α+β,1) |xλ (cid:20) (cid:0) 2 (cid:1) (cid:0)− − (cid:1) (cid:0) − (cid:1) (cid:0)− (cid:1) (cid:21) (cid:3) (cid:0) (cid:1) (cid:0) (cid:1) 2.1. Representation of Bessel Struve kernel function interms of exponential function. In this subsection we represent the Bessel Struve function interms of expo- nential function. Also, we derive the Marichev Saigo Maeda operator representation of special cases. The representation Bessel Struve Kernel function interms of exponential function as: (2.10) S−1 (x) = ex, 2 1+ex (2.11) S (x) = − . 1 2 x Now, we give the the following theorems Theorem 3. Let α,α,β,β ,γ,ρ,p,b,c,λ C . Suppose that Re(γ) > 0 and Re(ρ+n) > ′ ′ ∈ max 0,Re(α+α +β γ),Re(α β ) . Then ′ ′ ′ { − − } Iα,α′,β,β′,γtρ 1et (x) = xρ α α′+γ 1 0,+ − − − − (cid:16) (cid:17) ′ ′ ′ ′ (ρ,1), ρ+γ α α β,1 , ρ+β α ,1 , 1 ρ β ,1 ×3 Ψ3 ρ+β′,−1 , −ρ+γ− α α′,1 , −ρ+γ α′ −β,1− |x (cid:20) (cid:0) − −(cid:1) (cid:0) −(cid:1) (cid:0) − (cid:1) (cid:21) Proof. From equation(cid:0)1 and th(cid:1)e d(cid:0)efinition of Besse(cid:1)l S(cid:0)truve kernel funct(cid:1)ion, we have Iα,α′,β,β′,γtρ 1et (x) = Iα,α′,β,β′,γtρ 1 ∞ Γ(−1/2+1)Γ n+21 tn (x) 0,+ − 0,+ − √πn!Γ(n/2 1/2+1) (cid:16) (cid:17) Xn=0 − (cid:0) (cid:1) ! = ∞ Γ(1/2)Γ n+21 Iα,α′,β,β′,γtρ+n 1 (x) √πn!Γ n+1 0,+ − Xn=0 (cid:0)2 (cid:1) (cid:16) (cid:17) This together with Lemma 1 yields (cid:0) (cid:1) I0α,,+α′,β,β′,γtρ−1et (x) = xρ−α−α′+γ−1 ∞ xnn!Γ ρ+ρ+n+n,βρ′+,ρn++nγ+−γα−αα′ −α′,βρ,ρ++nn++γβ′ −α′α′ β (cid:16) (cid:17) Xn=0 (cid:20) − − − − (cid:21) 6 K.S NISAR,S.R MONDAL,AND P.AGARWAL (cid:3) which is the desired result. Theorem 4. Let α,α,β,β ,γ,ρ,p,b,c,λ C . Suppose that Re(γ) > 0 and Re(ρ+n) > ′ ′ ∈ max 0,Re(α+α +β γ),Re(α β ) . Then ′ ′ ′ { − − } Iα,α′,β,β′,γtρ 1 −1+et (x) = xρ α α′+γ 1 0,+ − t − − − (cid:18) (cid:18) (cid:19)(cid:19) 1, 1 ,(ρ,1), ρ+γ α α′ β,1 , ρ+β′ α′,1 ; ×4 Ψ4 1,23 2, ρ+β′,1 , ρ+−γ −α −α′,1 , ρ+γ −α′ β,1 |x (cid:20) 2(cid:0) 2 (cid:1) (cid:0) − − (cid:1) (cid:0) − − (cid:1) (cid:21) Proof. From equa(cid:0)tion(cid:1)1 a(cid:0)nd the d(cid:1)efin(cid:0)ition of Bessel St(cid:1)ruv(cid:0)e kernel function,(cid:1)we have Iα,α′,β,β′,γtρ 1 −1+et (x) = Iα,α′,β,β′,γtρ 1 ∞ Γ(1/2+1)Γ n+21 tn (x) 0,+ − t 0,+ − √πn!Γ(n/2+1/2+1) (cid:18) (cid:18) (cid:19)(cid:19) n=0 (cid:0) (cid:1) ! X = ∞ Γ(3/2)Γ n+21 Iα,α′,β,β′,γtρ+n 1 (x) √πn!Γ n+3 0,+ − Xn=0 (cid:0)2 (cid:1) (cid:16) (cid:17) Again using Lemma 1, we can conclude that (cid:0) (cid:1) Iα,α′,β,β′,γtρ 1 −1+et (x) 0,+ − t (cid:18) (cid:18) (cid:19)(cid:19) ′ ∞ Γ n+1 ρ+n,ρ+n+γ α α′ β,ρ+n+β′ α′ xxρ+n−α−α +γ−1 = 2 Γ ′ − − −′ −′ Γ n+3 ρ+n+β ,ρ+n+γ α α ,ρ+n+γ α β 2n! n=0 (cid:0) 2 (cid:1) (cid:20) − − − − (cid:21) X ′ = xρ−α−(cid:0)α +γ−(cid:1)1 ∞ Γ n+21 Γ ρ+n,ρ′+n+γ −α−α′ −′β,ρ+n+β′ −′α′ xn 2 × Γ n+3 ρ+n+β ,ρ+n+γ α α ,ρ+n+γ α β n! n=0 (cid:0) 2 (cid:1) (cid:20) − − − − (cid:21) X hence the conclusion. (cid:0) (cid:1) (cid:3) 2.2. Relation between Bessel Struve kernel function and Bessel and Struve function of first kind. In this subsection we show the relation between S (x) and α Bessel function I (x) and Struve function L (x) by choosing particular values of α v v (2.12) S (x) = I (x)+L (x), 0 0 0 2I (x)+L (x) 1 1 (2.13) S (x) = , 1 x then we derive the Marichev Saigo Maeda operator representation of special cases Theorem 5. Let α,α,β,β ,γ,ρ,p,b,c,λ C . Suppose that Re(γ) > 0 and Re(ρ+n) > ′ ′ ∈ max 0,Re(α+α +β γ),Re(α β ) . Then ′ ′ ′ { − − } Iα,α′,β,β′,γtρ 1(I (t)+L (t)) (x) 0,+ − 0 0 (cid:16) xρ α α′+γ 1 1, 1(cid:17) ,(ρ,1), ρ+γ α α′ β,1 , ρ+β′ α′,1 ; − − − = √π ×4 Ψ4 1,21 2, ρ+β′,1 , ρ+−γ −α −α′,1 , ρ+γ −α′ β,1 |x (cid:20) 2(cid:0) (cid:1) (cid:0) − − (cid:1) (cid:0) − − (cid:1) (cid:21) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) COMPOSITION FORMULAS OF BESSEL-STRUVE KERNEL FUNCTION 7 Proof. From equation 1.1 and the definition of Bessel Struve kernel function, we have I0α,,+α′,β,β′,γtρ0−1(I0(t)+L0(t)) (x) = I0α,,+α′,β,β′,γtρ−1 ∞ √Γπn(1!Γ)Γ(n/n2+2+1 1)tn (x) (cid:16) (cid:17) Xn=0 (cid:0) (cid:1) ! = ∞ Γ n+21 Iα,α′,β,β′,γtρ+n 1 (x) √πn!Γ n +1 0,+ − Xn=0 (cid:0) 2 (cid:1) (cid:16) (cid:17) Using Lemma 1, we obtain (cid:0) (cid:1) I0α,,+α′,β,β′,γtρ0−1(I0(t)+L0(t)) (x) (cid:16) ′ (cid:17) = ∞ Γ n+21 xρ+n−α−α +γ−1Γ ρ+n,ρ′+n+γ −α−α′ −′β,ρ+n+β′ −′α′ √πn!Γ n +1 ρ+n+β ,ρ+n+γ α α ,ρ+n+γ α β n=0 (cid:0) (cid:1) 2 (cid:20) − − − − (cid:21) X ′ = xρ−α−α +γ−1 ∞(cid:0) Γ n(cid:1)+21 xnΓ ρ+n,ρ′+n+γ −α−α′ −′β,ρ+n+β′ −′α′ √π Γ n +1 n! ρ+n+β ,ρ+n+γ α α ,ρ+n+γ α β n=0 (cid:0)2 (cid:1) (cid:20) − − − − (cid:21) X which is the desired re(cid:0)sult. (cid:1) (cid:3) Theorem 6. Let α,α,β,β ,γ,ρ,p,b,c,λ C . Suppose that Re(γ) > 0 and Re(ρ+n) > ′ ′ ∈ max 0,Re(α+α +β γ),Re(α β ) . Then ′ ′ ′ { − − } Iα,α′,β,β′,γtρ 1(2I1(t)+L1(t)) (x) 0,+ − t (cid:18) (cid:19) ′ xρ α α +γ 1 1, 1 ,(ρ,1), ρ+γ α α′ β,1 , ρ+β′ α′,1 ; − − − = √π ×4 Ψ4 1,21 2, ρ+β′,1 , ρ+−γ −α −α′,1 , ρ+γ −α′ β,1 |x (cid:20) 2(cid:0) (cid:1) (cid:0) − − (cid:1) (cid:0) − − (cid:1) (cid:21) Proof. From (1.1) and the(cid:0)defi(cid:1)ni(cid:0)tion of Be(cid:1)ss(cid:0)el Struve kernel fu(cid:1)nc(cid:0)tion, we have (cid:1) Iα,α′,β,β′,γtρ 1 2I1(t)+L1(t) (x) = Iα,α′,β,β′,γtρ 1 ∞ Γ(2)Γ n+21 tn (x) 0,+ − t 0,+ − √πn!Γ(n/2+2) (cid:18) (cid:18) (cid:19)(cid:19) n=0 (cid:0) (cid:1) ! X = Γ(2) ∞ Γ n+21 Iα,α′,β,β′,γtρ+n 1 (x). √π n!Γ n +2 0,+ − Xn=0 (cid:0)2 (cid:1) (cid:16) (cid:17) Using Lemma 1, we obtain (cid:0) (cid:1) Γ(2) ∞ Γ n+1 ρ+n,ρ+n+γ α α′ β,ρ+n+β′ α′ = 2 Γ ′ − − −′ −′ √π n!Γ n +1 ρ+n+β ,ρ+n+γ α α ,ρ+n+γ α β n=0 (cid:0)2 (cid:1) (cid:20) − − − − (cid:21) X ′ xxρ+n−α−α +γ(cid:0)−1 (cid:1) × n! ′ = xρ−α−α +γ−1 ∞ Γ n+21 xnΓ ρ+n,ρ′+n+γ −α−α′ −′β,ρ+n+β′ −′α′ √π Γ n +1 n! ρ+n+β ,ρ+n+γ α α ,ρ+n+γ α β n=0 (cid:0)2 (cid:1) (cid:20) − − − − (cid:21) X (cid:3) which is the desired(cid:0)result(cid:1). 8 K.S NISAR,S.R MONDAL,AND P.AGARWAL 3. Pathway Fractional Integration of Bessel Struve Kernel function By considering the idea of Mathai [36], Nair [35],introduced a pathway fractional in- tegral operator and developed further by Mathai and Haubold [37] ,[38] is defined as follows: Let f (x) L(a,b),η C,R(η) > 0,a > 0 and the pathway parameter α < 1 as [39], ∈ ∈ then [ x ] a(1−α) η a(1 α)t (1−α) (3.14) P(η,α)f (x) = xη 1 − f (t)dt 0+ − x Z (cid:20) (cid:21) (cid:16) (cid:17) 0 For a real scalar α, the pathway model for scalar random variables is represented by the following probability density function (p.d.f.): β (3.15) f (x) = c x γ−1 1 a(1 α) x δ (1−α) | | − − | | h i δ provided that < x < ,δ > 0,β 0, 1 a(1 α) x > 0, and γ > 0 where c −∞ ∞ ≥ − − | | is the normalizing constant and α is called thehpathway parameteir. For real α normalizing constant as follows: γ 1δ[a(1−α)]δΓ(γδ+1−βα+1), for α < 1 2 Γ(γ)Γ( β +1)  δ γ1−α c =  1δ[a(1−α)]δΓ(α−β1), for 1 γ > 0,α > 1  2 Γ(γδ)Γ(αβ−γ1−γδ) 1−α − δ 1(aβ)δ , α 1 2 Γ(γ) →  δ     δ Note that for α <1 it is a finite range density with 1 a(1 α) x > 0 and (3.15) − − | | remains in the extended generalized type-1 beta familyh . The pathway idensity in (3.15), for α < 1, includes the extended type-1 beta density, the triangular density, the uniform density and many other p.d.f’.s .[39].For instance , α > 1 gives β (3.16) f (x) = c x γ−1 1+a(1 α) x δ −(1−α) | | − | | h i provided that < x < ,δ > 0,β 0, and α > 0 which is the extended generalized −∞ ∞ ≥ type-2 beta model for real x. It includes the type-2 beta density, the F density, the Student-t density, the Cauchy density and many more.The composition of the integral transform operator (3.14) with the product of generalized Bessel function of the first kind is given in [39]. The purpose of this work is to investigate the composition formula of integral transform operatorduetoNair,whichisexpressed intermsofthegeneralizedWrighthypergeometric function, by inserting the generalized Struve function of the first kind S (λz) which is α definedintheequation(2.9). Theresultsgiveninthissectionarebasedonthepreliminary assertionsgivingbycompositionformulaofpathwayfractionalintegral(3.14)withapower function. Lemma 3. [35] Let η C, Re(η) > 0, β C and α < 1.If Re(β) > 0, and Re η > ∈ ∈ 1 α 1, then − − (cid:0) (cid:1) COMPOSITION FORMULAS OF BESSEL-STRUVE KERNEL FUNCTION 9 xη+β Γ(β)Γ 1+ η (3.17) P(η,α) tβ 1 (x) = 1 α 0+ − [a(1 α)]β Γ 1+ η +−β n (cid:2) (cid:3)o − (cid:0)1−α (cid:1) The pathway fractional integration of the Bessel Struv(cid:0)e Kernel func(cid:1)tion of the first kind is given by the following result. Theorem 7. Let η,σ,p,b,c,λ C and α < 1 be such that Re(η) > 0,Re(σ) > ∈ 0,Re(σ +n) > 0 and Re η > 1 then the following formula hold 1 α − (3.18) − (cid:0) (cid:1) P(η,α)[tσ 1S (λt)] (x) = xη+σΓ(ν+1)µ(1+1−ηα) Ψ 21, 21 , (ρ,1) ;λx 0+ − ν √π[a(1 α)]σ+p+1 ×2 2 ν +1, 1 , 1+ η +σ,1 − (cid:20) (cid:0) (cid:1)2 1 α (cid:21) (cid:16) (cid:17) − (cid:0) (cid:1) (cid:0) (cid:1) Proof. Applying (2.9), and (3.14) and changing the order of integration and summation, we get P(η,α) tσ 1S (λt) (x) = P(η,α) tσ 1 ∞ λnΓ(α+1)Γ((n+1)/2)tn (x) 0+ − ν 0+ − √πn!Γ(n/2+α+1) " #! (cid:16) (cid:2) (cid:3)(cid:17) Xn=0 = ∞ λnΓ(ν +1)Γ((n+1)/2) P(η,α) t(n+σ) 1 (x) √πn!Γ(n/2+ν +1) 0+ − Xk=0 (cid:16) (cid:8) (cid:9)(cid:17) Usingtheconditionsmentionedinthestatementofthetheoremandk K ,R(p+n) > 0 ∈ 0,Re η > 1. Applying Lemma 3 and using (3.17) with β replaced by σ +n, we get 1 α − − (cid:0) (cid:1) P(η,α) tσ 1S (λt) (x) = ∞ λnΓ(ν +1)Γ((n+1)/2) xη+α 0+ − ν √πn!Γ(n/2+ν +1) σ+n a(1 α) (cid:16) (cid:2) (cid:3)(cid:17) Xk=0 − Γ(σ +n)Γ 1+ η h i 1 α − × Γ 1+ η +σ +n 1 α(cid:0) (cid:1) − xη+αΓ(ν +1)Γ 1+ η (cid:0) (cid:1) = 1 α √π[a(1 α)σ] − (cid:0) (cid:1) − ∞ Γ n + 1 Γ(σ +n) (xλ)n 2 2 × Γ n +ν +1 Γ 1+ η +σ +n n! k=0 2 (cid:0) (cid:1) 1 α X − (cid:0) (cid:1) (cid:0) (cid:1) (cid:3) which gives the desired result By considering the relations given in 2.10 and 2.11, we obtain various new integral formulas for Bessel Struve functions involving in the Pathway fractional integration Op- erators: Theorem 8. Let η,σ,p,b,c C and α < 1 such that Re(η) > 0,Re(σ +n) > 0 and ∈ Re η > 1 then the following formula hold 1 α − − (cid:0) (cid:1) Γ 1+ η (σ,1); x P(η,α) tσ 1et (x) = xη+σ 1 α Ψ 0+ − [a(1 α−)]σ ×1 1 1+σ + η ,1 ; [a(1 α)] (cid:16) (cid:17) (cid:0) − (cid:1) (cid:20) 1−α − (cid:21) (cid:2) (cid:3) (cid:0) (cid:1) 10 K.S NISAR,S.R MONDAL,AND P.AGARWAL Proof. Applying (2.10),using (3.14) with the help of Lemma 3 and changing the order of integration and summation, we get P(η,α) tσ 1et (x) = P(η,α) tσ 1S (λt) (x) 0+ − 0+ − 1 −2 (cid:16) (cid:17) (cid:16) h i(cid:17) (cid:2) (cid:3) = P(η,α) tσ 1 ∞ Γ 12 Γ n+21 (x) 0+ − √πn!Γ n+1 " n=0 (cid:0) (cid:1) (cid:0) 2 (cid:1)#! X = ∞ 1 P(η,α) tσ+n 1 ((cid:0)x) (cid:1) n! 0+ − Xn=0 (cid:16) (cid:0) (cid:1)(cid:17) ∞ 1 xη+σ+nΓ(σ +n)Γ 1+ η = 1 α − n![a(1 α)]σ+nΓ 1+ η +σ +n (cid:0) (cid:1) n=0 − 1 α X − Γ 1+ η ∞ (cid:0) Γ(σ +(cid:1)n) xn = 1 α xη+σ [a(1 α−)]σ (a(1 α))nΓ 1+ η +σ +n n! (cid:0) − (cid:1) n=0 − 1 α X − (cid:0) (cid:1) (cid:3) which completes the proof of the theorem. Theorem 9. Let η,σ,p,b,c C and α < 1 such that Re(σ +n) > 0 and Re η > 1 ∈ 1 α − then the following formula hold − (cid:0) (cid:1) 1+et Γ 1+ η 1, 1 ,(σ,1); xλ P0(+η,α) tσ−1− t (x) = xη+σ2[a(1 1−αα)]σ ×2 Ψ2 1, 1 ,2 12+σ + η ,1 ; [a(1 α)] (cid:18) (cid:20) (cid:21)(cid:19) (cid:0) − (cid:1) (cid:20) 2 2 (cid:0) (cid:1) 1−α − (cid:21) (cid:0) (cid:1) (cid:0) (cid:1) Proof. Applying (2.11),using (2.9) , (3.14) and Lemma 1 and changing the order of inte- gration and summation, we get 1+et P(η,α) tσ 1− (x) = P(η,α) tσ 1S (λt) (x) 0+ − 2 0+ − 12 (cid:18) (cid:20) (cid:21)(cid:19) (cid:16) h i(cid:17) = P(η,α) tσ 1 ∞ Γ 32 Γ n+21 (x) 0+ − √πn!Γ n+3 " n=0 (cid:0) (cid:1) (cid:0) 2 (cid:1)#! X = ∞ Γ 23 Γ n+21 λn P(η(cid:0),α) t(cid:1)σ+n 1 (x) √πn!Γ n+3 0+ − Xn=0 (cid:0) (cid:1) (cid:0) 2(cid:1) (cid:16) (cid:0) (cid:1)(cid:17) Γ 3 ∞ Γ (cid:0)n+1 (cid:1) xη+σ+nΓ(σ +n)Γ 1+ η = 2 2 1 α − √π n! [a(1 α)]σ+nΓ 1+ η +σ +n (cid:0) (cid:1) n=0 (cid:0) (cid:1) − 1(cid:0) α (cid:1) X − Γ 1+ η ∞ Γ n+1(cid:0) Γ(σ +n) (cid:1) (xλ)n = 1 α xη+σ 2 2[a(1 −α)]σ Γ n+3 Γ 1+ η +σ +n n!(a(1 α))n (cid:0) − (cid:1) n=0 2 (cid:0) (cid:1) 1 α − X − (cid:0) (cid:1) (cid:0) (cid:1) (cid:3) Similarly one can derive the pathway integral representation of (2.12), (2.13). Conclusion In this present study, we consider Bessel Struve kernel function S (λz),λ,z C to α ∈ obtain the results in terms of generalized Wright functions by applying Marichev-Saigo- Maeda operators. Also, the pathway integral representations Bessel struve kernel function and its relation between many other functions also derived in this study.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.