Compositiondependent band offsets ofZnO and itsternary alloys Haitao Yin,1,2 Junli Chen,1 Yin Wang,2,3,∗ Jian Wang,2,3 and Hong Guo4,2 1KeyLaboratory forPhotonic and ElectronicBandgap Materials of Ministryof Education, School ofPhysicsandElectronicEngineering, HarbinNormal University, Harbin 150025, China 2Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China 3TheUniversityofHongKongShenzhenInstituteofResearchandInnovation,Shenzhen, Guangdong518057,China 4Center for the Physics of Materials and Department of Physics, 7 McGill University, Montreal, Quebec H3A 2T8, Canada 1 (Dated:January26,2017) 0 2 We report the calculated fundamental band gaps of wurtzite ternary alloys Zn1−xMxO (M=Mg, Cd) and the band offsets of the ZnO/Zn1−xMxO heterojunctions, these II-VI materials are important for electronics n andoptoelectronics. Ourcalculationisbasedondensityfunctionaltheorywithinthelinearmuffin-tinorbital a (LMTO)approachwherethemodifiedBecke-Johnson(MBJ)semi-localexchangeisusedtoaccuratelyproduce J thebandgaps,andthecoherentpotentialapproximation(CPA)isappliedtodealwithconfigurationalaveragefor 5 theternaryalloys. ThecombinedLMTO-MBJ-CPAapproachallowsonetosimultaneouslydetermineboththe 2 conductionbandandvalencebandoffsetsoftheheterojunctions.ThecalculatedbandgapdataoftheZnOalloys ] scaleasEg =3.35+2.33xandEg =3.36−2.33x+1.77x2forZn1−xMgxOandZn1−xCdxO,respectively, i wherexbeingtheimpurityconcentration. Thesescalingaswellasthecompositiondependentbandoffsetsare c quantitativelycompared totheavailableexperimental data. Thecapabilityof predictingtheband parameters s andbandalignmentsofZnOanditsternaryalloyswiththeLMTO-CPA-MBJapproachindicatethepromising - l applicationofthismethodinthedesignofemergingelectronicsandoptoelectronics. r t m . NOTE:ThisarticlehasbeenacceptedbyScientificReports centrationofsomeimpurityspecieB.Ifxissmallasisusually t a inarevisedform(www.nature.com/articles/srep41567). thecase,e.g.x=0.1%,onehastocalculateasystemcontain- m ingatleast1000hostatomsA in orderto accommodatejust - asingleimpurityatomB. Namelythetotalnumberofatoms d are very large when x is small which makes first principles I. INTRODUCTION n analysisextremelydifficulttodo. Second,onehastoperform o aconfigurationalaverageofthecalculatedresultsbecausethe c Zincoxide(ZnO),havingadirectbandgap(E )of3.37eV [ g dopedimpurityatomsarerandomlydistributedinthesample, and a high excitonbindingenergyof about60 meV at room andtheconfigurationalaverageismuchmorecomputationally 1 temperature,1,2 is a promising material for electronics and costly. Finally,itiswell-knownthatthefirstprinciplesmeth- v optoelectronics, including applications to solar cells,3 light- odsofdensityfunctionaltheory(DFT)11,12withlocal-density 7 emitting diodes4,5 and ultraviolet micro-lasers.6 In electron- approximation(LDA)13–15 and generalizedgradientapproxi- 4 1 icstechnology,semiconductorheterojunctionsarecommonly mation (GGA)16,17 underestimate the band gaps of semicon- used to provide potential barriers and/or quantum wells that 7 ductorsand, without a correctband gap, the accuracyof the 0 tune and control carrier transport. Composition controlling calculated band offset could be questionable. For these rea- 1. techniques are the most widely applied method to alter the sons,thecompositiondependentbandoffsetsofmanyimpor- bandgap ofmaterials in the so called “bandengineering”to 0 tantsemiconductors,includingthatofZnOanditsternaryal- build heterojunctions. For ZnO, composition doping of Mg 7 loys,havenotbeentheoreticallyinvestigatedtoasatisfactory 1 andCdatomshasbeenusedtoincreaseordecreasetheband level. : gap,respectively.7–10 v It could be quite tedious and difficult to experimentally During the past decades, considerable theoretical efforts i X measurethebandgapsofsemiconductoralloysandbandoff- have been devoted to solve the above band gap and config- r setsoftheirheterojunctionsovertheentiredopingconcentra- urationalaverageissues. AmongthemthecombinedDFTap- a tion,thereforefirstprinciplestheoreticalcalculationsandpre- proachofcoherentpotentialapproximation(CPA)18andmod- dictionsareofgreatfundamentalinterestaswellaspractical ified Becke-Johnson (MBJ) semilocal exchange19 under the relevance. Inparticular,asnanoelectronicdevicesarereach- linear muffin-tin orbital (LMTO) scheme,20,21 has been suc- ingthesub-10nmscale,atomisticfirstprinciplespredictionof cessfulincalculatingthebandinformationofmanysemicon- bandparametersof semiconductormaterialsand heterojunc- ductors, their alloy and heterojunctions. So far, the LMTO- tions is becoming very important in order to design and/or CPA-MBJ approach has been applied to predict the band selectnewmaterialsthathavedesiredproperties. However,it gapsofallgroupIII-Vsemiconductors,22 thealloyInGaN,23 hasbeenaseriouschallengeforexistingfirstprinciplesmeth- AlGaAs,24 the group IV semiconductor alloys SiGeSn,25 as odsto accuratelypredictbandinformationof semiconductor wellasthe bandoffsetofgroupIII-Vsemiconductorhetero- alloys and heterojunctions for several reasons. First of all, junctionsGaAs/AlGaAs.24 Quantitativecomparisonbetween let’s consider calculating the band offset of a heterojunction the calculated results and measured data were very satisfac- A1−xBx/AwhereAisasemiconductorandxthedopingcon- tory. However, a more challenging and important semicon- 2 initioSimulationPackage(VASP).26,27AsshowninFig.1(a), theagreementisexcellent-suggestingtheappropriatenessof our ASA scheme. Note that the calculated LDA band gap, though consistent with that reported in the literature,28,29 is underestimatedwhichisawell-knownissueofLDA. HavingobtainedthecorrectbandstructureofpureZnOby LMTO at the LDA level, we further determine the c-values of the MBJ potential(See MethodsSection) in orderto pro- duce the experimental E , 3.37 eV, of pure ZnO. Fig. 1 (b) g showstheMBJresult,andtheopeningoftheE ascampared g toourLDAresultaswellasthepreviouslyreportedLDAE g of 0.74 eV28,29 and GGA E of 0.80 eV,30 is evident. Till g now,wehavedecidedalltheparametersfortheLMTO-CPA- MBJapproachtoproducetheexperimentalbandgapofpure ZnO,includingtheLMTOrelatedASAparametersforsphere FIG. 1. (Color online) (a) The calculated LDA band structure of positions and radii and the MBJ related parameter c-values pureZnO.Blacksolidlinewasobtainedbytheplanewaveelectronic for increasing the band gap of semiconductors. More com- package VASP, and red circles by NANODSIM. (b) The calculated plicatedASAschemeandmorec-valuesfordifferentspheres MBJ band structure of pure ZnO crystal, giving the experimental mayproducemuchmoreaccuratebandparameters,wewould band gap of 3.37 eV. (c) Thecalculated CPAband structure of the Zn0.85Mg0.15O alloy, the band gap isincreased to 3.7 eV. (d) The notethatourchoiceisagoodcompromisebetweensimplicity calculatedCPAbandstructureoftheZn0.85Cd0.15Oalloy,theband and reasonable accuracy. Though a few parameters need to gapisdecreasedto3.07eVcomparedtothatofpureZnO. be pre-determinedin our first principlecalculations, it is ac- ceptablesincewearedealingaverychallengingproblemand these parameters can be easily obtained. In the further cal- ductorfamily-wurtzite groupII-VIsemiconductors,hasnot culations of the band gap of semiconductor alloys and band beeninvestigatedbytheLMTO-CPA-MBJapproachyet. offset of semiconductor heterojunctions, we will fix all the In this work, we have calculated the band gap of wurtzite parametersobtainedinthepureZnOcalculations. group II-VI semiconductor alloys Zn1−xMxO (where M = Band gaps of ZnO ternary alloys. Having correctly de- MgorCd)andthebandoffsetofZnO/Zn1−xMxO usingthe terminedthebandgapofpureZnOcrystal,exactlythesame LMTO-CPA-MBJ approach. The calculated band gaps of ASAschemeandtheMBJsemi-localexchangepotentialwere Zn1−xMgxO and both conduction and valence band offsets usedtocalculatetheelectronicstructuresofZnOalloys. Note ofZnO/Zn1−xMgxO heterojunctionexhibita linearfunction that when ZnO crystal is doped with (substitutional) impu- of Mgconcentration,while a nonlinearbehaviorofthe band rity atoms at random sites, translational symmetry is bro- gapsofZnCdOandbandoffsetsofZnO/ZnCdOispredicted. ken and momentum k is no-longer a good quantum num- The calculated band gaps and band offset of heterojunctions ber such that Bloch’s theorem no longer exists. In our CPA agree well with the corresponding experimental measure- calculations,18,31 the spirit of the approachis to constructan ments. Our calculatedband gapdata of ZnO alloysare well effectivemediumbycompletingconfigurationalaverageover fit to the followingscaling expressions: Eg = 3.35+2.33x therandomdisorderthatrestoresthetranslationalinvariance, for alloy Zn1−xMgxO, and Eg = 3.36 − 2.33x + 1.77x2 assuchonecanagainspeakofa“bandstructure”withbands foralloyZn1−xCdxO.Togetherwith thepreviouslyreported thatarebroadenedbyimpurityscattering. results on group III-V semiconductors22–24 and group IV Fig.1(c,d)plotsthecalculatedCPAbandstructureofZnO semiconductors,25wecanconfidentlyexpectthatthebandpa- alloywith15%MgOand15%CdOcomposition,respectively. rametersandbandalignmentsofmostconventionalsemicon- FromFig.1(c),weobtainE =3.70eVthatis0.33eVhigher g ductorscanbewellpredictedfromfirstprinciplesbyLMTO- than that of pure ZnO. This is very close to the experimen- CPA-MBJapproach. tallymeasuredvalueofEg = 3.68eVforZn0.85Mg0.15O.10 ForZn0.85Cd0.15O,thecalculatedbandgapisEg =3.07eV, namely,0.3eVsmallerthanthatofpureZnO. II. RESULTSANDDISCUSSIONS WehavecalculatedE ofwurtziteZnOalloysversusimpu- g rityconcentrationxuptox=40%,forZn1−xMxOwhereM BandstructureofpuresemiconductorZnO.Tocarryout =MgorCd,asshowninFig.2.Beyondx=40%,itisknown DFT calculations within the LMTO scheme, atomic sphere experimentally7,8 thatZnOalloytendstoformacubicphase approximation (ASA) should be employed for space fill- (whichisnotthefocusofthiswork).ForZn1−xMgxOalloys, ing with placing atom and vacancy spheres at appropriate ourcalculatedE increaseslinearlywiththeMgOconcentra- g locations.20,21DifferentASAscheme,i.e.,differentspherepo- tion as E = 3.35+2.33x (the solid squaresline in Fig.2). g sitionsandradii,willaffectthecalculatedelectronicstructure. Thisscalingisconsistentwiththe experimentalobservations To verifyour ASA scheme of the LMTO method, we calcu- of E = 3.4+2.3x in Ref. 32, and E = 3.37+2.51x in g g lated the band structure of pure ZnO crystal at the level of Ref. 33. According to our calculations, E of the wurtzite g local LDA to compare with that obtained by the Vienna Ab Zn1−xMgxOalloycanbetunedto4.29eVatx = 40%. Our 3 4.5 Zn MgO 1-x x CBO 0.6 Zn1-xCdxO V) VBO )4.0 e V ( e Eg=3.35+2.33x ts0.4 2 ( e VBO=2.17x-1.70x s g3.5 f E f o 2 0.2 Eg=3.36-2.33x+1.77x d n 2 3.0 a CBO=-0.07x-0.07x b 0.0 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 concentration x concentration x FIG. 2. Solid squares and dots are calculated band gap Eg of the FIG. 4. Solid squares and dots present the CBO and VBO of the Zn1−xMgxOandZn1−xCdxOternaryalloys, respectively. Thein- ZnO/Zn1−xCdxOheterojunctionsforx<40%,respectively. creaseofMg(Cd)compositionenlarges(narrows) theband gapof thesewurtzitealloyswiththeMg(Cd)compositionfrom0to40%. istopredictthebandoffsetsfortheZnO/Zn1−xMxOhetero- junctions. Since ourmethodcan accuratelypredictthe band gaps of pure ZnO and its ternary alloys, both the conduc- tion band offset (CBO) and the valence band offset (VBO) 0.6 CBO can be calculated in one shot. In comparison, for those cal- V) VBO culations where Eg was not correctly obtained (such as us- e 0.4 ingLDA/GGA functional),the conductionbandoffsetcould ( CBO=1.57x s not be predicted unless one amends E after the valence et 0.2 band offset is calculated. Fig. 3 plots tghe calculated band s f of 0.0 offsets of ZnO/Zn1−xMgxO heterojunctions for x < 40%. d VBO=-0.79x The band offsets linearly scale as VBO= −0.79x eV and n-0.2 CBO= +1.57xeV. Here theminussign inVBO meansthat a b thevalencebandmaximumoftheZnMgOalloyislowerthan -0.4 thatofthepureZnO;whiletheplussigninCBOindicatesthe conductionbandminimumoftheZnMgOishigherthanthat 0.0 0.1 0.2 0.3 0.4 ofthepureZnO.Fromthefittedcurves(blacklines),theband concentration x offset ratio (VBO:CBO) is about 2. This is in the range of FIG. 3. Solid squares and dots present the CBO and VBO of the the experimentallyreportedvalues: 3:2 to 7:3 as reportedin ZnO/Zn1−xMgxOheterojunctionsforx<40%,respectively. Ref.39,and1.5to2asreportedinRef.9. AtMgconcentra- tionof15%,ourcalculatedCBO(VBO)is0.22eV(0.11eV), which agreeswith the experimentallymeasured data of 0.16 fitted linear slope agrees outstandingly with previous calcu- eV(0.09eV).9 lated value of 2.03 by LDA,34 though LDA gives underesti- Fig. 4 shows the calculated band offsets of matedbandgaps. Moreover,if quadraticfitting isappliedto ZnO/Zn1−xCdxOforx < 40%,andanonlinearrelationship our calculated data, the coefficient of the x2 term gives the withtheCdconcentrationisobtained:VBO=2.17x−1.70x2 bowingparameter of 0.18 eV, which is close to the previous eVandCBO=−0.07x−0.07x2eV.Thenegativecoefficient calculated bowing parameter of 0.44.35 For the Zn1−xCdxO of x for CBO indicates that the conduction band minimum alloys, we found that E changes with the Cd concentration of the ZnCdO is lower than that of the pure ZnO, while the g asE = 3.36−2.33x+1.77x2whichisnonlinear(thedots positive coefficient of x for VBO shows a higher valence g linelineinFig.2),andtheEg ofthewurtziteZn1−xCdxOal- band maximum of the ZnCdO. In particular, our calculated loy can be narrowed to 2.71 eV when x = 40%. Here, the VBOvaluesof0.20eVatx=10%and0.104eVatx=5% coefficientofthex2 termgivesthebowingparameterof1.77 agree very well with the experimentalvalues of 0.203eV at eV,whichagreesextremelywellwiththeexperimentalvalue x=9.6%40and0.17±0.03eVatx=5%41. of1.75eV.36 Notethatpreviouscalculatedbowingparameter Fig. 5 intuitively show the band alignment of wasconsiderablysmaller,1.21eVinRef. 37and1.03eV in ZnO/Zn0.85M0.15O (M=Mg, Cd) by plotting the local Ref.38. projectedDOS42,43 alongtheheterojunctiondirection. Itcan Band offsetsof ZnO and its ternaryalloys. Having ob- be clearly observed that the pure ZnO crystal formed type-I tainedaccurateE for theZnO alloys, a veryimportanttask band alignment heterojunction with its Mg and Cd doped g 4 elements locate on the same site with certain probabilities and their average physical quantities were dealt with CPA. ThesepreviouslyreportedresultsshowthattheLMTO-CPA- MBJapproachcanaccuratelycalculatethebandinformation ofgroupIII-VandgroupIVsemiconductorsandtheirbinary andternaryalloysandheterojunctions. Inthiswork, wefur- ther applied this approach on a more challenging system - wurtzitegroupII-VIsemiconductors,andtheobtainedresults are quantitatively compared with the experimental measure- ments. We used the effective medium CPA method underLMTO scheme to calculate the electronic structures of semiconduc- torsandalloys,whichdoesnotcaptureanyatomicrelaxations. Consideringthatwe aredealinga verychallengingproblem, which needs to solve the doping, configurational average, band gap underestimation and computational cost issues in onecalculation,to thisend, the combinedLMTO-CPA-MBJ approach is a reasonably compromised method. Moreover, formanysemiconductoralloys,theircompositionshavevery FIG. 5. (Color online) The local projected DOS of: (a) closelatticeparameters,makingthestructuralchangenegligi- ZnO/Zn0.85Mg0.15O and (b) ZnO/Zn0.85Cd0.15O heterojunctions. ble. Itcouldbeexpectedthatthisapproachcanbeusedinthe ThecoolercolorindicateslowerDOS.Theblue(darker)regionin- predictionofbandparametersof wide rangeof semiconduc- tuitively shows the band gap of the semiconductors. ZnO and its tors. ternaryalloysZnMgOandZnCdObothformstype-Ibandalignment. III. SUMMARY ternaryalloys, andthebandgapofpureZnOissmallerthan thatofZnMgObutlargerthanthatofZnCdO. Usingastate-of-the-artatomisticapproach,wehavecalcu- Discussions. BasedonourLMTO-CPA-MBJcalculations latedthebandgapofwurtziteZnObasedgroupII-VIternary onZnOanditsalloys,ageneralprocedureforpredictingband alloys with Mg or Cd compositions, and the band offsets of gapsofsemiconductoralloysandbandoffsetsofheterojunc- ZnO and its ternary alloy heterojunctions. The calculated tions is in order. (1) Choose a proper ASA scheme and de- band gaps of the ZnO alloys scale as Eg = 3.35 + 2.33x terminethec-valueoftheMBJsemi-localexchangetoobtain and Eg = 3.36 − 2.33x + 1.77x2 for Zn1−xMgxO and accuratebandstructuresofthepuresemiconductor;(2)calcu- Zn1−xCdxO, respectively. Further calculations on the band late the band information of semiconductorsalloys by CPA; offsetsshowthatthepureZnOformedtype-Ibandalignment (3)calculatethebandoffsetofthesemiconductorheterojunc- heterojunctionwithitsMgandCddopedternaryalloys. The tionwithcorrecteddeterminedbandgaps,fromwhichtheva- calculatedbandgapsofthealloysandbandoffsetofthehet- lenceandconductionbandoffsetcanbepredictedinoneshot. erojunctionsquantitativelyagreewith the experimentalmea- Sinceamajorproblemofsemiconductortechnologyistode- surements for x < 40% where the ZnO and its Mg and Cd sign materials having desired electronic structure, the theo- doped alloys are in the wurtzite phase. The success of the retical proceduresummarized here should be applicableto a LMTO-CPA-MBJonpredictingthebandgapsandbandoff- widerangeofresearchissues. setsofgroupII-VIsemiconductoralloysandheterojunctions, togetherwith its capability on calculatingand predictingthe ThecombinedLMTO-CPA-MBJapproachisfirstlyapplied bandgapsandbandoffsetsofgroupIV25andgroupIII-V22–24 onthebandgapcalculationofgroupIII-Vsemiconductoral- semiconductors, make us can confidently conclude that the loy InxGa1−xN, the results are in excellent agreement with the measured data for the entire range of 0 ≤ x ≤ 1.23 LMTO-CPA-MBJapproachcanbewidelyusedtopredictthe Later on, the approach is implemented in NANODSIM soft- semiconductor band parameters and band alignments from ware package.31 Using NANODSIM Ref. 22 calculated the firstprinciplesandwillbeveryusefultothedesignofemerg- ingelectronicsandoptoelectronics. band structures and effective masses of all the zinc-blende groupIII-VsemiconductorswithLMTO-MBJapproach,and verygoodquantitativecomparisonwiththeexperimentaldata is made; Ref. 24 for the first time calculated the band off- IV. METHODS setofGaAs/AlxGa1−xAsheterojunctionsfortheentirerange of the Al doping concentration 0 < x ≤ 1 using LMTO- Our calculations are based on the LMTO-CPA-MBJ self- CPA-MBJ approach,boththe conductionband offset(CBO) consistent approach where DFT is carried out in the LMTO andthevalencebandoffset(VBO)agreeverywellwithmany scheme with the atomic sphere approximation (ASA),20,21 experiments; Ref. 25 calculated the composition dependent as implemented in the NANODSIM software package.31 For bandgapsofgroupIVternaryalloysSiGeSn,inwhichthree ASA, vacancy spheres were placed at appropriate locations 5 c-values for real atom spheres and vacancy spheres, respec- TABLEI.Positionsofatomicspheresinthewurtzitestructure. VT tively. Whilethe c-valuescanbeself-consistentlycalculated andVOdenotethevacancyspheresatthetetrahedralcenterandocta- using the electron density, in our calculations we fixed it to hedralcenteroftheZnOprimitivecell,respectively. Theoptimized sphereradiiof1.1481A˚,0.7654A˚,and1.3023A˚ areusedforthe bec = 1.75andc = 1.13forvacancyspheresandrealatom realatomspheres,vacanciesatthetetrahedralcenterandvacancies spheres respectively, which gave an Eg of ZnO in excellent attheoctahedralcenter,respectively. agreementwiththeexperimentalvalue(3.37eV).Havingob- tained the correct band gap of ZnO, the same values of the Site Zn O VT VO c-parameterswere used in all the subsequentcalculations of x 0 0 0 0 thealloysandheterojunctions. y 0 0 0 √3/3 z 0 u c 1+u c u c/2 The experimental lattice constants47,48 of hexagonal x 1/2 1/·2 21/2· ·0 wurtzite ZnO, a = 3.2495 A˚,47 c/a = 1.602,47 and u = y √3/6 √3/6 √3/6 √3/3 0.382c,48 wereusedin ourcalculationsforpureZnOandall z c/2 (1 +u) c u c/2 1+u c the alloys. The primitive cell of the wurtzite structure was 2 · · 2 · used to calculate the band structures and E of ZnO and its g alloys. To determine the band offset, (1120) supercell sys- tems containing 8 unit cell of pure ZnO and 8 unit cell lay- forspacefilling[SeeTABLEIfordetails].23Inparticular,the ers of ZnO alloy were used to calculate the potential pro- simulationcellisfilledbyslightlyoverlappedsphereswithin file along the heterojunction. A 10× 10 × 10 k-mesh and ASA,andthecellvolumeofthewholesimulatedsystemV cell a 6×6×3 k-mesh were usedto sample the Brillouin Zone shouldbeequalto thetotalvolumeoftheatom andvacancy (BZ) for the primitive cells and the heterojunctions, respec- spheres V . With the sphere position of the wurtzite spheres tively. The band gap values, as well as the energy position structure in TABLE I, we optimized the sphere radii by re- ofthevalencebandmaximumandconductionbandminimum producingtheelectronicbandstructuresofpureZnOcrystals. are read fromthe CPA bandstructure. The CPA bandstruc- Afterward,todealwiththeimpuritydopedZnOalloy,thesta- turecanintuitivelytracetheshapeofthebandstructurewith tistical effective medium CPA theory18 is applied which al- broadeningdue to impurityscattering, and providemore ac- lowsustoobtaintheconfigurationalaveragedresultswithout curatelyandrichbandinformationforthesemiconductorand individuallycomputingeachatomicconfiguration. itsalloys.Thebandoffsetvalueswerecalculatedbasedonthe We use the MBJ semi-local exchange that can accurately electrostatistic potentialprofile of the heterojunctionand the determinethebandgapE ofthesemiconductors.19 Follow- g primitivecell,asmoredetailsinRef.24. ingtheoriginalpaper,19theMBJsemi-localexchangepoten- tialhasthefollowingform, ACKNOWLEDGEMENTS 1 5 2t (r) vMBJ(r)=cvBR(r)+(3c−2) σ , (1) x,σ x,σ πr12sρσ(r) Y.W. is grateful to Drs. Yu Zhu, Lei Liu and Dongping LiuforusefuldiscussionsregardingtheuseoftheNANODSIM where subscript σ is spin index, ρ is the electron density software package. This work is supported by the University σ for spin channel σ. The quantity t is the kinetic energy Grant Council (Contract No. AoE/P-04/08) of the Govern- σ density and vBR(r) is the Becke-Roussel potential used in mentofHKSAR(YW,JW,HG),theOpenProjectProgramof x,σ Ref.44. TheaboveMBJpotentialhastwotermswhoserela- KeyLaboratoryforPhotonicandElectricBandgapMaterials tiveweightisgivenbyaparameterc,whichdependslinearly (HY, YW), Special Program for Applied Research on Super on the square root of the average of |∇ρ|/ρ. According to ComputationoftheNSFC-GuangdongJointFund(YW,JW), manypreviousstudies,19,22–25,45,46thecalculatedE increases SeedFundingProgrammeforBasic ResearchofHKU(YW) g monotonicallywith c. For simplicity,we onlyused different andNSFC(No.11404273). ∗ [email protected] 6 Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, 1 D.C.Reynolds,D.C.Look,B.Jogai,C.W.Litton,G.Cantwell, H.Koinuma, andY.Segawa,Appl.Phys.Lett.72,3270(1998). andW.C.Harsch,Phys.Rev.B60,2340(1999). 7 A.Ohtomo,M.Kawasaki,T.Koida,K.Masubuchi,H.Koinuma, 2 M.H.Huang,S.Mao,H.Feick,H.Yan,Y.Wu,H.Kind,E.We- Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, ber,R.Russo, andP.Yang,Science292,1897(2001). Appl.Phys.Lett.72,2466(1998). 3 A.NuruddinandJ.Abelson,ThinSolidFilms394,48 (2001). 8 L. A. Bendersky, I. Takeuchi, K.-S. Chang, 4 J. Kong, S. Chu, M. Olmedo, L. Li, Z. Yang, and J. Liu, W. Yang, S. Hullavarad, and R. D. Vispute, Appl.Phys.Lett.93,132113(2008),http://dx.doi.org/10.1063/1.2992629J..Appl.Phys.98,083526(2005). 5 K.Nakahara,S.Akasaka,H.Yuji,K.Tamura,T.Fujii,Y.Nishi- 9 H. H. Zhang, X. H. Pan, B. Lu, J. Y. Huang, P. Ding, moto,D.Takamizu,A.Sasaki,T.Tanabe,H.Takasu,H.Amaike, W. Chen, H. P. He, J. G. Lu, S. S. Chen, and Z. Z. Ye, T. Onuma, S. F. Chichibu, A. Tsukazaki, A. Ohtomo, and Phys.Chem.Chem.Phys.15,11231(2013). M.Kawasaki,Appl.Phys.Lett.97,013501(2010). 6 10 S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. H. Li, D. Z. 30 F. Oba, A. Togo, I. Tanaka, J. Paier, and G. Kresse, Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, Phys.Rev.B77,245202(2008). Appl.Phys.Lett.93,082108(2008). 31 Y.ZhuandL.Liu,AtomisticSimulationofQuantumTransportin 11 P.HohenbergandW.Kohn,Phys.Rev.136,B864(1964). NanoelectronicDevices(WorldScientific,2016). 12 W.KohnandL.J.Sham,Phys.Rev.140,A1133(1965). 32 S.Adachi,ed.,PropertiesofSemiconductorAlloys:Group-IV,III- 13 J.P.PerdewandA.Zunger,Phys.Rev.B23,5048(1981). VandII-VISemiconductors(Wiley,2009). 14 D.M.CeperleyandB.J.Alder,Phys.Rev.Lett.45,566(1980). 33 K. Koike, K. Hama, I. Nakashima, G. you Takada, 15 S. H. Vosko, L. Wilk, and M. Nusair, K. ichi Ogata, S. Sasa, M. Inoue, and M. Yano, Can.J.Phys.58,1200(1980). J.Cryst.Growth278,288 (2005),13thInternationalConference 16 J.P.Perdew,J.A.Chevary,S.H.Vosko,K.A.Jackson,M.R.Ped- onMolecularBeamEpitaxy. erson,D.J.Singh, andC.Fiolhais,Phys.Rev.B46,6671(1992). 34 C.Franz,M.Giar,M.Heinemann,M.Czerner, andC.Heiliger, 17 J. P. Perdew, K. Burke, and M. Ernzerhof, MRSProceedings1494,57(2012). Phys.Rev.Lett.77,3865(1996). 35 A.Schleife,C.Rdl,J.Furthmller, andF.Bechstedt,NewJ.Phys. 18 P.Soven,Phys.Rev.156,809(1967). 13,085012(2011). 19 F.TranandP.Blaha,Phys.Rev.Lett.102,226401(2009). 36 J.Ishihara,A.Nakamura,S.Shigemori,T.Aoki, andJ.Temmyo, 20 J. Kudrnovsky´, V. Drchal, and J. Maek, Appl.Surf.Sci.244,381 (2005), 12th International Conference Phys.Rev.B35,2487(1987). onSolidFilmsandSurfaces. 21 I. Turek, V. Drchal, J. Kudrnovsky´, S˘ob M., and W. P., Elec- 37 X. D. Zhang, M. L. Guo, W. X. Li, and C. L. Liu, tronicStructureoftheDisorderedAlloys,SurfacesandInterfaces J.Appl.Phys.103,063721(2008),http://dx.doi.org/10.1063/1.2901033. (BluwerAcademic,1997). 38 X. F. Fan, H. D. Sun, Z. X. Shen, J.-L. Kuo, and Y. M. Lu, J. 22 Y.Wang,H.Yin,R.Cao,F.Zahid,Y.Zhu,L.Liu,J.Wang, and Phys.:Condens.Matter20,235221(2008). H.Guo,Phys.Rev.B87,235203(2013). 39 G.ColiandK.K.Bajaj,Appl.Phys.Lett.78,2861(2001). 23 M. Csar, Y. Ke, W. Ji, H. Guo, and Z. Mi, 40 G. Yao, Y. Tang, Y. Fu, Z. Jiang, X. An, Y. Chen, and Y. Liu, Appl.Phys.Lett.98,202107(2011). Appl.Surf.Sci.326,271 (2015). 24 Y. Wang, F. Zahid, Y. Zhu, L. Liu, J. Wang, and H. Guo, 41 J.-J. Chen, F. Ren, Y. Li, D. P. Norton, S. J. Pearton, Appl.Phys.Lett.102,132109(2013). A. Osinsky, J. W. Dong, P. P. Chow, and J. F. Weaver, 25 Z.Zhu,J.Xiao,H.Sun,Y.Hu, R.Cao,Y.Wang, L.Zhao, and Appl.Phys.Lett.87,192106(2005),http://dx.doi.org/10.1063/1.2128477. J.Zhuang,Phys.Chem.Chem.Phys.17,21605(2015). 42 Y.Wang,Z.Yu,F.Zahid,L.Liu,Y.Zhu,J.Wang, andH.Guo, 26 G.KresseandJ.Hafner,Phys.Rev.B47,558(1993). J.Appl.Phys.116,023703(2014),http://dx.doi.org/10.1063/1.4890010. 27 G.KresseandJ.Furthmu¨ller,Phys.Rev.B54,11169(1996). 43 M. Chen, Z. Yu, Y. Wang, Y. Xie, J. Wang, and H. Guo, 28 P. Schro¨er, P. Kru¨ger, and J. Pollmann, Phys.Chem.Chem.Phys.18,1601(2016). Phys.Rev.B47,6971(1993). 44 A.D.BeckeandM.R.Roussel,Phys.Rev.A39,3761(1989). 29 A. Janotti and C. G. Van de Walle, 45 D.J.Singh,Phys.Rev.B82,205102(2010). Phys.Rev.B76,165202(2007). 46 D.Koller,F.Tran, andP.Blaha,Phys.Rev.B85,155109(2012). 47 D.R.Lide,ed.,CRCHandbook ofChemistryandPhysics,73rd ed.(CRCPress,1992). 48 J.E.JaffeandA.C.Hess,Phys.Rev.B48,7903(1993).