JournalofVolcanologyandGeothermalResearch291(2015)72–85 ContentslistsavailableatScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Composite volcanoes in the south-eastern part of İzmir–Balıkesir Transfer Zone, Western Anatolia, Turkey IoanSeghedia,CahitHelvacıb,ZoltanPécskayc aInstituteofGeodynamics,RomanianAcademy,Jean-LouisCalderon19-21,Bucharest020032,Romania bDokuzEylülÜniversitesi,MühendislikFakültesi,JeolojiMühendisliğiBölümü,TR-35160İzmir,Turkey cInstituteofNuclearResearch,HungarianAcademyofSciences,P.O.Box51,Bemter18/c,H-4001,Debrecen,Hungary a r t i c l e i n f o a b s t r a c t Articlehistory: DuringtheEarly–MiddleMiocene(WesternAnatolia)severalvolcanicfieldsoccuralongaNE–SW-trending Received9September2014 shearzone,knownasİzmir–BalıkesirTransferZone.Thisisadeformedcrustal-scalesinistralstrike-slip Accepted28December2014 faultzonecrossingtheBornovaflyschandextendingalongtheNW-boundaryoftheMenderesMassifby Availableonline9January2015 accommodatingthedifferentialdeformationbetweentheCycladicandMenderescorecomplexeswithinthe Aegeanextensionalsystem.HerewediscussthevolcanicactivityinYamanlarandYuntdağıfieldsthatisclosely Keywords: relatedtotheextensionaltectonicsoftheİzmir–BalıkesirTransferZoneandinthesametimewiththeepisodic WesternAnatolia İzmir–BalıkesirTransferZone corecomplexdenudationoftheMenderesMassif. Volcanology Thisstudydocumentstwocompositevolcanoes(YamanlarandYuntdağı),whosepresentventareaisstrongly K/Arage erodedandcutbyavarietyofstrike-slipandnormalfaultsystems,thetranscurrentNW–SEbeingthedominant Geochemistry one.Theerosionalremnantsoftheventareas,resemblingashallowcraterintrusivecomplex,illustratethe Miocenevolcanism presenceofnumerousdykesorvariablysizedneck-likeintrusionsandlavaflows,typicallyassociatedwith hydrothermalalterationprocesses(propyliticandargillic).Suchventareaswereobservedinboththeexamined volcanicfields,having~6kmindiameterandbeingmuchmoreerodedtowardthesouth,alongtheNW–SEfault system.Lavaflowsandlavadomesaresometimesassociatedwithproximalblockandashflowdeposits.Inthe cone-buildingassociationpart,besideslavaflowsandremnantsoflavadomes,rareblockandashandpumice- richpyroclasticflowdeposits,aswellasaseriesofdebris-flowdeposits,havebeenobserved. The rocks display a porphyritic texture and contain various proportions of plagioclase, clinopyroxene, orthopyroxene,amphibole,rarebiotiteandcorrodedquartz.Theexaminedrocksfallatthelimitbetween calc-alkalinetoalkalinefield,andplotpredominantlyinhigh-Kandesiteanddacitefieldsandoneisrhyolite. Thetraceelementdistributionsuggestsfractionalcrystallizationprocessesandmixinginuppercrustalmagma chambersandsuggestsametasomatizedlithosphericmantle/lowercrustsource.Thispreliminaryvolcanological– petrologicalandgeochronologicalbasestudyalloweddocumentingtheYamanlarandYuntdağıascomposite volcanoesgeneratedduringpost-collisionalEarly–MiddleMiocenetranstensionaltectonicmovements. ©2015ElsevierB.V.Allrightsreserved. 1.Introduction Western Anatolian Volcanic Province from the Eocene to Miocene (e.g.,Helvacıetal.,2009;ErsoyandPalmer,2013;Göktaş,2014).The Western Anatolia is characterized by two main continental exhumationoftheMenderesMassifalongthecrustal-scalelow-angle assemblagesknownastheSakaryamicro-platetothenorthandthe detachmentfaultswasaccompaniedbyNE–SW-trendinghigh-angle Anatolide–Taurideblocktothesouth.Theseterraneswereamalgamat- strike-slipfaultsalongitswesternandeasternmargins(Erkületal., edduringLateCretaceous–Paleocenecontinentalcollisionalongthe 2005a;Ersoyetal.,2011,2012a;Erkül,2012;ErkülandErkül,2012; northernbranchoftheNeo-Tethys,whichismarkedbytheVardar– KaraoğluandHelvacı,2012b).TheNE–SW-trendingzoneofdeforma- İzmir–AnkaraSutureZone(seeinsetFig.1).TherocksoftheVardar– tionalongthewesternmarginoftheMenderesCoreComplexistermed İzmir–AnkaraSutureZoneinwesternAnatoliaarerepresentedbythe theİzmir–BalıkesirTransferzone(İBTZ)(Erkületal.,2005a;Uzeland ophiolitic mélange units of the Bornova Flysch Zone and Tavşanlı Sözbilir,2008;Ersoyetal.,2011,2012b;Karaoğlu,2014).TheİBTZ Zone. Widespread orogenic magmatic activity developed in the representstheNEextensionintowestTurkeyofaNE–SW-trending crustal-scaleshearzone(themid-Cycladiclineament),alongwhich MiocenegranitoidswereemplacedintheCyclades(Pe-Piperetal., E-mailaddress:[email protected](I.Seghedi). 2002).TheNE–SW-trendinghigh-anglestrike-slipfaultsarerecorded http://dx.doi.org/10.1016/j.jvolgeores.2014.12.019 0377-0273/©2015ElsevierB.V.Allrightsreserved. I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 73 Fig.1.Geologicalmapofthestudyareaandtwosimplifiedprofiles,eachcrossingthecraterareasofYamanlarandYuntdağıvolcanoes(modifiedfromMTAGeologicalmaps, 1/100000Scale).Theinsetisshowingthestudyareasituatedatthesouth-westernpartofİzmir–BalıkesirtransferzoneandtheedgewithMenderesCoreComplex. inseveralNeogenebasins,suchasalongtheeasternmarginsofthe wediscussforthefirsttimetwocompositevolcanoesgeneratedin NE–SW-trending Kocaçay (Sözbilir et al., 2011), Kocaçay and a post-collisional setting, associated with İBTZ area. Crater-shaped Cumaovasıbasins(Kayseri-Özeretal.,2014)andGördesbasins(Ersoy “calc-alkalinecenters”havebeenintuitivelyrecognizedinprevious etal.,2011).(Fig.2) publications,andhavebeendrawnongeologicalmaps(e.g.Agostini Compositevolcanoesareessentiallyconfinedtoasingleventora etal.,2010;Karaoğlu,2014),althoughtheymissasuitablevolcanolog- group of closely spaced central vents showing a simple conical or icaldescription.TheİBTZzonewasactiveduringEarly–LateMiocene shield-likeoverallsymmetryandhavingmorethanoneevolutionary whenitgeneratedaseriesofNE–SWelongatedfluvio-lacustrinebasins stage in their existence (e.g. Francis, 1993). Such volcanoes have (Seyitoğlu et al., 1997; Aydar, 1998; Yılmaz et al., 2000; Uzel and beendominantlyfoundassociatedwitharcvolcanismandsubduction Sözbilir,2008;Ersoyetal.,2012a,b;KaraoğluandHelvacı,2012a,b; processes,orpost-collisionalprocesses(e.g.Lexaetal.,2010).Here, Uzeletal.,2013)associatedwithcontemporaneousvolcanicactivity. 74 I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 Fig.2.GeologicalmapofthewesternAnatoliashowingthedistributionoftheNeogenebasins,radiometricagesofthevolcanicintercalationsintheNeogenesedimentsandmajor structuresandourstudyarea(modifiedfrom1/500000scaledgeologicalmapofTurkey(MTA);Abbreviationsforgranitoids:EyG:Eybek,KzG:Kozak,AG:Alaçamdağ,Kog,Koyunoba, EG:Eğrigöz,BG:Baklan,TG:TurgutluandSG:Salihligranitoids.Abbreviationsforbasins:KB:KocaçayBasin,BB:BigadiçBasin;CuB:CumaovasıBasin;SoB:SomaBasin,GB:Gördes Basin,DB:DemirciBasin,SeB:SelendiBasin,UGB:Uşak–GüreBasin,EB:EmetBasin.Abbreviationsfordetachments:GDF:Gediz(Alaşehir)DetachmentFault,SDF:SimavDetachment Fault,BMDF:BüyükMenderesDetachmentFault(afterErsoyetal.,2014withmodifications). The volcanic products consist of high-K calc-alkaline and minor formation,consistingofconglomeratesatthebasegradingupwards K-alkalineandultrapotassicrocks,suggestedtoderivefromthelitho- into sandstone-shale alternations and the Sabuncubeli formation, sphericmantleand/ormixingwithlowercrustalmelts(Borsietal., consistingofmudstonesandthenlimestones.Thesedimentaryrocks 1972;AkayandErdoğan,2004;Erkületal.,2005a,b;Innocentietal., passintovolcanicdeposits.LateMiocenesedimentsarealsoknown 2005;Agostinietal.,2010;Ersoyetal.,2010,2012a,b;Chakrabarti along İBTZ area, sometimes associated with basaltic volcanic rocks etal.,2012). (e.g.Ersoyetal.,2014). Thispaperisbasedonvolcanologicalfieldobservationsperformed onseveralprofilescrossingtwovolcanicareas,onK–Aragedetermina- 3.Methods tionsandgeochemicalanalysesofrepresentativesamples.Herewe discusstheeruptivehistoryoftheYamanlarandYuntdağıcomposite 3.1.Geochemistry volcanoes, attempting to evaluate their generation in the post- collisionalextensionalgeodynamiccontext. Rockpowdersoftheselectedfreshrocksampleswerepreparedby removingthealteredsurfacesandpowderedinashatterboxatDokuz 2.Geologicsetting EylülUniversity.Thegeochemicaldatafor17sampleswereperformed byACMEAnalyticalLaboratoriesLtd.inVancouver(Table1).Element The pre-Miocene basement is characterized by the Bornova abundancesweredeterminedbyICP–AES(majorelements)andICP– FlyschZone(BFZ),(Erdoğan,1990;Okayetal.,2012),knownasan MS(traceelements),followingalithiummetaborate–tetraboratefusion olistostrome–mélangebelt,lyingbetweentheMenderesMetamor- anddilutenitricaciddigestionofa0.1gsample.WeightLossonignition phicCoreComplexandSakaryazone,aspartoftheİzmir–Ankara (LOI)wasdeterminedbyweightdifferenceafterignitionat1000°C.The Tethyansuture(Figs.1,2).Itiscomposedoftectonizedgravitymass precisionformajorelementswaslessthan1%.Theprecisionfortrace flows, locally metamorphosed, of Late Cretaceous–Paleocene age, elementswasintheorderof10%relative. with blocks of Mesozoic limestones, serpentinites and submarine ophiolitic mafic volcanic rocks. The formation of the BFZ coincides 3.2.K–Ardatingmethodology with the Cretaceous subduction and HP/LT metamorphism of the northernpassivecontinentalmarginoftheAnatolide–TaurideBlock TheK–ArmeasurementsobtainedattheK–Arlaboratoryofthe (Okayetal.,2012). InstituteforNuclearResearch,DebrecenHungaryusedthefollowing The area was active during the Early Miocene extension, when methodology:Afterthefifteenrocksampleswereopticallyexamined, various deposits unconformably cover the BFZ. The Early–Middle about1kgofeachsamplewasbrokenintosmallpiecesfreeofweather- Miocenedepositsofthestudiedareaconsistoftwosedimentaryunits ing, xenoliths and joints. These whole-rock pieces were retained, overlain by the Yamanlar volcanics (acc. to Uzel et al., 2013), or crushedandsievedto150–300μmsizefractionusingcoppersieves. Yuntdağıvolcanicunit(acc.toÖzkaymaketal.,2013),i.e.theKızıldere Thefinepowderwaselutriatedwithdistilledwaterandovendriedat I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 75 Table1 Whole-rockmajorandtraceelementanalysesofrepresentativesamplesfromYamanlarandYuntdağıvolcanoes. Sample 52 52A 53 54 55 55A 56 57 59 60 61 62 65 67 68 69 70 Volcanic Lava Dyke Dyke Dyke Lava Lava Lava Lava Lava Lava Dyke Intrusion Lava Lava Lava Lava Lava form SiO2 55.46 59.75 59.84 61.40 57.46 59.18 59.04 59.69 56.76 57.67 59.17 57.52 59.78 61.64 60.04 68.66 54.77 Al2O3 15.50 16.44 15.23 15.56 14.96 16.15 16.88 14.90 17.40 16.73 15.54 16.17 16.82 16.42 16.64 15.04 17.32 Fe2O3 6.11 5.51 5.32 4.79 5.46 5.32 6.15 6.01 7.40 6.39 5.62 5.91 5.33 5.03 5.50 3.14 5.86 MgO 2.81 2.74 2.77 2.10 2.98 2.19 2.94 3.17 2.73 2.95 1.99 2.81 2.90 2.46 3.13 0.26 2.52 CaO 6.51 4.52 4.38 3.76 6.97 4.75 6.04 5.38 6.82 6.06 4.05 6.11 5.13 4.99 5.43 1.60 7.52 Na2O 2.78 3.54 3.03 2.75 2.50 3.18 3.13 2.89 3.12 2.93 2.56 2.54 3.33 3.31 3.42 3.47 2.99 K2O 3.70 2.44 3.92 3.44 3.21 2.41 2.91 4.00 2.57 3.44 3.29 3.40 3.07 3.20 3.16 5.31 3.49 TiO2 0.77 0.60 0.64 0.53 0.64 0.58 0.75 0.74 0.81 0.84 0.55 0.79 0.68 0.62 0.69 0.38 0.99 P2O5 0.32 0.19 0.32 0.22 0.35 0.18 0.26 0.40 0.30 0.38 0.15 0.32 0.26 0.21 0.25 0.09 0.49 MnO 0.11 0.08 0.11 0.09 0.13 0.08 0.09 0.08 0.11 0.11 0.15 0.08 0.10 0.09 0.10 0.03 0.13 LOI 5.60 3.90 4.10 5.10 4.70 5.70 1.40 2.30 1.60 2.10 6.80 4.00 2.30 1.70 1.30 1.70 3.50 Total 99.64 99.70 99.64 99.71 99.36 99.72 99.65 99.60 99.66 99.62 99.81 99.61 99.69 99.73 99.68 99.68 99.54 Cs 6.0 1.3 2.6 5.1 4.0 1.9 3.3 5.0 3.1 6.3 19.4 2.1 4.2 6.5 5.9 15.9 5.9 Rb 163.1 62.4 141.7 127.1 110.7 69.5 104.8 155.3 92.3 149 139.1 118.7 117.2 124.5 120.8 250.7 134.4 Ba 1266 1044 1325 1073 1364 959 1063 1307 1174 1301 629 1,336 930 921 960 1234 1695 Sr 664.5 610.4 526.5 427.9 750.5 688.5 658.8 689.3 677.8 717.3 244.7 777.6 611.1 522.4 601.6 420 918 Pb 2.3 14.5 13.7 10 2.9 12.1 3.3 2.8 4.5 3.6 7.4 4.9 4.2 2.4 3.4 6.8 3.7 Th 29.80 15.20 17.30 16.60 17.70 15.10 15.30 23.80 13.90 23.40 13.60 31.20 23.50 21.40 21.20 49.20 19.70 U 6.8 4.2 4.8 4.6 5.3 3.7 4.1 6.5 3.5 5.7 4.1 7.6 6.6 5.8 5.9 10.4 4.9 Zr 222.7 138.4 177.8 172.3 179.9 146.3 189.0 261.6 165.9 211.2 153.7 241.0 163.8 171.3 175.5 451.5 215.3 Hf 5.8 3.6 6.1 4.8 5.6 4.5 5.0 7.3 5.1 5.8 4.9 7.4 4.4 5.2 4.3 12.7 6.2 Ta 0.8 0.7 0.9 0.7 0.8 0.8 0.7 1.2 0.6 0.7 0.6 1.0 0.7 0.7 1.0 1.5 0.7 Y 20.5 23.9 24.3 22.6 21.5 22.9 26.9 27.4 24.7 23.2 21.6 22.0 19.4 19.2 24.0 21.5 22.1 Nb 14.4 10.2 13.7 11.1 11.6 9.9 10.6 15.6 9.0 12.5 9.7 14.9 11.7 11.6 13.4 25.0 13.5 Sc 15 13 14 11 17 12 18 17 19 18 12 15 13 12 13 6 18 Ni 13.8 6.2 67.9 21.3 49.2 4.3 8.9 168.8 7.3 9.7 4.9 13.7 10.9 12.0 28.0 1.4 19.2 Co 19.1 18.8 52.5 33.1 48.1 21.4 44.9 52.9 30.4 30.5 11.7 27.4 35.3 23.9 30.3 28.2 43.5 V 139 90 95 85 131 79 157 125 176 160 94 136 107 95 118 10 181 W 23.7 50.9 304.6 195.3 248.7 73.7 218.7 235.6 78.3 88.2 42.6 99.5 127.1 87.3 107.9 217.8 191.2 Ga 17.6 17.6 16.7 16.9 17.1 17.4 18.6 16.9 18.9 18.8 17.8 17.9 17.7 16.8 17.9 16.3 19.8 Zn 46 60 55 53 45 50 40 44 51 44 49 59 34 46 41 46 56 Cu 31.5 14.9 18.0 12.8 29.5 10.6 22.2 30.2 24.3 38.4 10.3 28.5 20.7 19.9 31.3 5.8 31.1 La 48.1 36.8 37.9 36.9 40.2 39.1 40.8 51.7 37.5 43.4 32.4 51.0 52.2 40.7 46.7 83.6 47.8 Ce 91.5 70.8 70.8 67.0 78.0 73.2 75.5 92.2 71.0 84.2 61.9 93.6 92.9 75.5 82.1 127.8 92.8 Pr 9.53 7.51 7.99 7.31 8.55 7.79 8.69 11.62 7.95 9.32 6.51 9.90 9.58 7.69 8.63 14.17 10.08 Nd 37.1 28.8 28.4 27.5 29.4 30.0 35.5 44.9 29.6 35.6 23.3 34.8 33.5 25.3 29.1 47.9 36.7 Sm 6.22 5.25 5.76 5.38 5.72 5.65 6.16 7.83 6.07 6.19 4.48 5.90 5.46 4.77 5.21 7.46 6.48 Eu 1.36 1.14 1.23 1.17 1.23 1.19 1.42 1.54 1.43 1.42 0.97 1.33 1.34 1.10 1.28 1.47 1.53 Gd 4.86 4.43 4.89 4.29 4.59 4.52 5.13 5.95 5.18 5.15 4.10 4.73 4.44 4.07 4.71 5.28 5.32 Tb 0.71 0.74 0.76 0.69 0.71 0.70 0.83 0.93 0.80 0.79 0.64 0.73 0.66 0.61 0.69 0.77 0.81 Dy 3.82 3.74 3.57 3.8 3.79 3.57 4.4 4.43 4.46 4.45 3.67 4.22 3.29 3.11 3.66 3.95 3.78 Ho 0.77 0.85 0.89 0.79 0.83 0.85 0.95 1.00 0.90 0.80 0.72 0.74 0.73 0.63 0.80 0.80 0.80 Er 2.04 2.35 2.33 2.28 2.04 2.27 2.58 2.89 2.67 2.26 2.13 2.16 2.24 1.95 2.33 2.46 2.37 Tm 0.36 0.37 0.42 0.37 0.37 0.40 0.43 0.45 0.40 0.35 0.35 0.35 0.34 0.30 0.33 0.41 0.39 Yb 2.13 2.61 2.58 2.38 2.27 2.41 2.64 2.65 2.48 2.33 2.39 2.26 2.02 2.21 2.15 2.59 2.11 Lu 0.36 0.35 0.41 0.35 0.37 0.38 0.40 0.40 0.40 0.38 0.34 0.33 0.32 0.30 0.37 0.40 0.30 110°Cfor24h.Oneportionoftheready-madewhole-rocksamplewas DetailsoftheanalyticalmethodshavebeenreportedbyBalogh groundedinagatemortarforpotassiumanalysescarriedoutwithflame (1985),Pécskayetal.(2006)andOdinetal.(1982).K–Arageswere photometry. calculated using decay constants suggested by Steiger and Jäger Table2 K/ArdataofrepresentativesamplesfromYamanlarandYuntdağıvolcanoes. Nr.crt. No.ofK/Ar Samplename Rocktype K 40Arrad 40Arrad K/Arage Volcanicarea (%) (ccSTP/g)×10−6 (%) (Ma) 1 8207 052 Andesitelava 2.404 1.5561 19.9 16.57±1.16 Yamanlar 2 8208 052A Andesitedyke 1.772 1.1738 54.8 16.96±0.58 Yamanlar 3 8209 053 Andesitedyke 3.184 1.8573 42.9 14.94±0.58 Yamanlar 4 8210 054 Dacitedyke 2.463 1.6816 32.9 17.48±0.80 Yamanlar 5 8211 056 Andesitedomelava 2.039 1.2509 11.2 15.71±1.94 Yamanlar 6 8212 057 Andesitedomelava 2.325 1.5972 83.0 17.58±0.54 Yamanlar 7 8213 059 Andesitelava 2.057 1.2886 74.7 16.04±0.50 Yamanlar 8 8214 060 Andesitelava 2.959 1.9958 46.9 17.27±0.64 Yuntdağı 9 8215 061 Daciteintrusion 3.015 1.8687 35.5 15.87±0.69 Yuntdağı 10 8216 062 Andesiteintrusion 2.545 1.4921 11.6 15.02±1.75 Yuntdağı 11 8217 065 Andesitelava 2.52 1.5533 46.0 15.79±0.59 Yuntdağı 12 8218 067 Andesitelava 2.67 1.6579 42.6 15.90±0.62 Yuntdağı 13 8219 068 Andesitelava 2.24 1.5065 43.0 17.22±0.67 Yuntdağı 14 8220 069 Rhyolitelava 4.13 2.8270 44.2 17.52±0.67 Yuntdağı 15 8221 070 Andesiteclastinpyroclasticflow 2.78 1.8078 46.6 16.65±0.62 Yuntdağı 76 I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 (1977).Theinter-laboratorystandardsAsia1/65,LP-6,HD-B1andGL-O, associationisdominatedbylavaflowsorlavadomeswheremostof aswellasatmosphericArwereusedtocontrolthemeasurements.All them are eroded. Toward the periphery, insignificant pyroclastic analyticalprecisionisreportedatthe1σlevel. depositshavebeenfoundinYuntdağı,duetoerosionandburialin younger Miocene sedimentary deposits (Fig. 1). The most suitable 4.Volcanologicalobservations termforsuchkindofcomplexstructuresdominatedbylavaflowsare compositevolcanoes(e.g.DavidsonanddeSilva,2000).Toillustrate 4.1.Structureofvolcanicedifices thedistributionofdepositsrelativetoventfordiscussedcomposite volcanoweusedtheterminologyofDavidsonanddeSilva(2000). Thehighlyerodedpresentedificeheightisupto~800m.Inboth cases(YamanlarandYuntdağı)itcanberemarkedanerodedquasi- 4.2.Mainventarea circularcrater-likerimandamuchdeeplyerodedcentralventarea thathas6–7kmindiameter(Fig.1).Thecentralventareasareoccupied Thecentralventareas,inbothcaseshaveasimilarcircularshape by a shallow subvolcanic intrusion complex. The cone-building ~3 km in diameter, suggesting former craters characterizedby the Fig.3.a:14.9MaerodeddykeinYuntdağıintrusivefeedingcomplex;b.15.02Mairregularintrusivebody(neck?)showingcomplexjointinginYamanlarshallowsubvolcanicintrusions; c.flowbandinginYamanlarlavaswithinclusionsofcognateinclusions;d.flowbandinginlavas—Yuntdağıvolcano;e.dominantlyfall-outorigindepositsintercalatedinthelavadome flowsinYuntdağıvolcano(seedescriptioninthetext);f.pyroclasticblockandashflowdeposits(seedescriptioninthetext)inYuntdağıvolcano;g.Pyroclasticflowdeposit(ignimbrite)in Yuntdağıvolcano(seedescriptioninthetext);h.sequenceoffluvialconglomerates(showingcross-beddingatthebase)intopoflaharic(debrisflow)deposits,characterizedby heterolithic,varioussize,dominantlyroundedandsubroundedlithoclast,withishpumices,inaprevailingmuddy–ashymatrix.Thesequencerepresentspartofring-plainassociation aroundYuntdağıvolcano. I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 77 presenceofnumerousdykes(Figs.1,3a,b)orvarious-sizedandirregu- 4.4.2.Fall-outdeposits larlyshaped(neck-like)intrusionsandlavas.Thepervasivehydrother- Avolcaniclasticbeddedsequenceofwhitishcolorand~1.5–2m malalterationofthesubvolcanicintrusioncomplexischaracteristic; thickness is intercalated between dome lava flows at point 066 propyliticalterationdominatesoverargillicaspreviouslydescribedin (Fig.3e).Atitsbaseitshowsa0.7msequenceofcm-sizebedsconsisting Yamanlar,withquartzveinsassociatedwithgold(Dora,1964;Sayılı of various size, well sorted, ash to lapilli and angular-subangular andGonca,1999). massiveandesitelithoclasts.Intheupperpartthereisadiscordant ashy-dominated layer, 0.8–1.4 m thick, showing a mixture of ashy materialandrarelapilli-sizelithoclasts. 4.3.Proximalconeassociation Initslowerpartthissequenceischaracterizedbyseveralpulsesofa Lavaflowsarethemostcommonattheedgesupto1–2kmdistance fall-outoriginthatallowedthesubaerialsortingprocesses.Itresulted duringthedome-formingprocesses.Theupperdiscordantashymassive towardtheexteriorforbothvolcanoesandarecharacterizedbyatypi- cal flow banding underlined sometimes by the structural variation layercouldbeareworkedmaterialofthesimilarfall-outoriginasthe lowersequence. givenbydifferenceinvesicularity.Theyareeasilyassignedtothevent areaduetothedivergentdiptrendofflowbanding.Lavadomesare alsoobservedatthepresent-dayedificeedges,thoughitisdifficultto 4.4.3.Ignimbrites Atpoint064outcropsa~3mthickdepositshowinglargevolumesof imaginetheextentoftheirdistributionbecauseofthestrongerosional processes(Fig.4).Dome-shapemorphologycanbeviewedonaprofile ashymatrix,reddishincolor,witharatherhomogeneousdistributionof crossingthemarginoftheYuntdağıcrater(Fig.1).Theyaretheresult irregularpumiceclaststhathavevarioussize(~5–20cm),suggesting of a more viscous flow and are characterized by a more massive absenceofgrading.Atthetop,thelastseveralcmshowsmallersize pumices(~1–2cm)(Fig.3g).Itiscovereddiscordantlybyablocky appearance,sometimesshowinglargesub-verticalpolygonaljointing. lavaflowandoverlaysadifferentlavasequence. Polygonalscatteredblocksareoccasionallyexposedatthetopofthe edifices,suggestingformerdomestructure,presentlyeroded. Thedepositislikelytorepresentapyroclasticflowunit(ignimbrite) mostprobablyemplacedinbetweenlava-anddomegeneratingevents. Theupperthinzonewithsmallersizepumicessuggeststobereworked, 4.4.Cone-buildingassociation asoftenthesituationinnon-weldedignimbrites. Itisplaced2–10kmfromtheventanditisdominatedbyfluidallava 4.5.Ring-plainassociation flowsandrarelavadomes,whichdivergeallaroundthecone,some- timesassociatedwithvolcaniclasticdepositsthathavebeenobserved Thisareaisnotwelldevelopedsinceitispresentlyburiedunderthe onlyinYuntdağıvolcano.Severalvolcaniclasticlithologieshavebeen surroundingmuchyoungeralluvialfans(Fig.1).Itlocallysurroundsthe detected: volcanoesandmaynotbeconsideredpartoftheconstructionaledifice itself.SuchdepositswereobservedatthesouthernmarginofYuntdağı 4.4.1.Blockandashflowdeposits (point063onFig.1).Herethereisasequenceofinterbeddedfluvial Asequenceofmonolithicbrecciawithash-sizematrixcontaining conglomeratesandlahar(debrisflow)deposits(Fig.3h),whichform whitishlapilli-sizepumices(1–2cmindiameter),scoriawithuneven thedistaledgesofwedge-likefansofdebrisatthelowerconeslopes. roundedmargins(2–3cmindiameter)andvariable,highcontentsof angular lithoclasts, consisting of monolithic andesite from 1 cm to 5.Petrographyandgeochemistry 1.5msize(Figs.1,3f).Thesequenceconsistsofseveralunitsofmassive faintlybeddeddepositsofvariablethickness(0.5–2m),coveringthe 5.1.Petrography eastern slopes of the Yuntdağı volcano and is intercalated in lava flows.Thevariousbedsaredominatedbyangularmonolithiclithoclasts 5.1.1.Yamanlarvolcano and are unsorted (Fig. 3f), main differences between the units Theanalyzedsamplesareporphyritic,showingvariablephenocryst consistinginthesizeandvolumeoftheangularlithoclasts. load. However, there are some petrographic differences between Thefeaturesaretypicalforasequenceofpyroclasticblockandash volcanoessetbytheirmainphenocrystphases.Plagioclase(andesine– flowdepositsthatsucceededatshorttimeintervals. bytownite,opticallyestimated),amphiboleandbiotite(13.5–18%,as Fig.4.a.PanoramaofYuntdağıerodedcraterviewingfromtoptowardtheSWmargins;notetheerosionaldome-shapeaspectofanintrusivebodyinsidethecrater(photocourtesyby ErginUmutSayıl);b.panoramaofYamanlarerodedcraterviewedfromtop-middleedgetowardtheSW.Notetheremnantblocksofformerdomestructureintheforegroundandrounded shapeofpresenterodedmarginofthecrater. 78 I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 Fig.5.Microscopeviewofselectedsamples(detaileddescriptioninAppendix1).Location:Yamanlarvolcano:a.sample053,andesitedyke,notetheroundedmarginsofplagioclaseand irregularshapeofcognateinclusions;b.sample054,dacitedyke,notethepresenceofroundedmarginsofplagioclaseandopacitearoundbiotite;c.sample059,andesitelava,notethe presenceofroundedmarginsofplagioclase,opacitearoundbiotiteandirregularshapeofcognateinclusions;Yuntdağıvolcano:d.sample060,andesitelava,notetheslightrounded marginsofplagioclase,opacitearoundbiotiteandamphiboleandirregularshapeofcognateinclusion;e.sample065,andesitelava,notethesievedandmarginallycorrodedplagioclase andresorbedandmarginallyopaciteamphibole;f.sample069,rhyolitelava,notethelargecrystalofK-feldspar,resorbedamphiboleandfreshbiotite.Abbreviations:Pl— plagioclase;K-f—potassiumfeldspar;Amph—amphibole;Bi—biotite;Cpx—clinopyroxene;Opx—orthopyroxene;Op—opaqueminerals;Ci—cognateinclusions. modal)arethemainphenocrystofYamanlar(Appendix1).Plagioclase roundedmarginswithhostandesites,whileothersarecharacterized is rarely sieved, but mostly presents irregular margin. Pyroxenes bysomeembayments.OtherspecificfeaturesofYuntdağıareplagio- (clinopyroxeneandorthopyroxene)andcorrodedquartz,besidesof clasesievetexturesand/orirregularmarginsandbiotiteandamphibole theubiquitousapatite,opaquemineralsandsphenearethemainacces- marginalortotaloxidation,andrareamphiboleovergrowthsonbiotite soryminerals.Cognateinclusions(hypidiomorphicquasi-equigranular (sample067,Appendix1). aggregatesofplagioclase,pyroxene,amphiboleandopaqueminerals) showingsharpcontactsandroundedmarginswithhostandesiteand 5.2.Geochemistry resorptionofplagioclaseandopaciterimsaroundbiotitearefrequent physiognomies (Fig. 5, Appendix 1).Thesizeof cognate inclusions TheLOIofthemajorityoftheeffusiverocksisabout1.3–2.3wt.%.All rangesindiameterfromlessthan0.5cmtoatleast20cm,withmedian theshallowsubvolcanicintrusiverocksandafewlavasarevariablyaf- diameterslessthan10cm.Theyshowrounded,sphericaltolobate fectedbyhydrothermalalteration.Itwasnotpossibletoentirelyavoid shapesandsuggesttobegeneticallyrelatedtothehostrocks. themandthesesamplesdisplayhigherLOI(3.9–6.8wt.%).Thisisthe reasontheresultshavebeenevaluatedonananhydrousbasisinthe 5.1.2.Yuntdağıvolcano classificationandotherdiagrams. Plagioclase(andesine–bytownite opticallyestimated),pyroxenes Onthetotalalkalisversussilicadiagram(Fig.6a)mostsamplesplot , (clinopyroxeneandorthopyroxene),amphiboleandbiotite(upto24%, withinthesub-alkalinefieldatthelimitwiththelatitefield.According asmodal)arethemainphenocrystphasesinYuntdağı(Appendix1). toPeccerilloandTaylor(1976)diagram(Fig.6b)alargeK Ovariation 2 RareK-feldsparphenocrystsarepresentalongplagioclase,amphibole (2–4%)inarelativelylargerangeofSiO —56–65%canbeobserved, 2 andbiotiteinasinglerhyolitesample(069),wherethegroundmasspre- withnoevidentcorrelationbetweenKandsilica.Mostoftherocksfall sentsparallelunevenbandsshowingdifferenttypesofglassdevitrifica- randomlyinthehigh-Kandesitefield,exceptingthreesamples:two tion,possiblysuggestingflowbanding.Cognateinclusions(aggregateof dacites (61, 54) and a rhyolite (69). Primitive mantle-normalized holocrystallineplagioclase,pyroxeneandamphiboleandopaquemin- incompatibleelementpatternsshownegativeanomaliesforNb–Ta,as erals)reachdecametricsize.Someofthemshowsharpcontactsand well for P and Ti (Fig. 7a, b). There is a positive Pb anomaly that I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 79 randomanalyticalerrorshouldbeinconnectionwiththesecondary alterationprocesses,however,thehydrothermalactivitydidnotaffect significantlytheapparentages.Thustheseageshavealsogeological meaningandtherandomanalyticalerrorcanbeoverestimated.The ageintervalof volcanic activity in both edifices spansfor ~2.5 Ma, between 17.52–14.94Ma with an average of 0.82 Ma 1σ precision rangeifweconsiderallthemeasurements,or0.62ifwetakeoutthe analyticalerrorsgreaterthan1,suggestingsimilartimelengthforboth ofthem(Fig.8).Thereisonlyoneknownagedeterminationinour studyarea(S-906,yielding17.0±0.3Ma,Rb–Srage)ofErcanetal. (1996);howeveritsexactlocationisonlyguessed(Fig.2).Ourdata fallsintheintervalsreportedbypreviouspublisheddatainthesur- roundingarea(Borsietal.,1972;Savaşçın,1978;Ercanetal.,1996; Agostinietal.,2010;Ersoyetal.,2014)correspondingtoEarly–Middle Miocene,andtheyindicatetherelativetimebetweentheinception andvanningofthevolcanicactivityinYamanlarandYuntdağıvolcanoes. Itistonotethatthemostevolvedrock,rhyolite(69),isalsooneof the oldest (17.52 ± 0.67 Ma). The youngest dated rocks (14.94 ± 0.58Ma;15.02±1.75Ma)arerepresented,inbothcases,byintrusive rocksinsidetheshallowsubvolcanicareainsidethecraters. 7.Discussion 7.1.Volcanicevolution TheK–Aragedeterminationsalongvolcanologicalobservationsare essentialinunderstandingthecomparativevolcanicevolutionofthe volcanoes. The initial stages of volcanic activity were dominantly effusiveandsubaerial.Bothvolcanoesshowawell-exposedshallow intrusivecomplexthatinthecaseofYamanlarexposesalargerange ofagesforthevariousintrusivebodies(17.48±0.80Ma;16.96± 0.58Ma;14.94±0.58Ma),suggestiveofacontinuousactivityconnect- Fig.6.a.Totalalkali–silica(TAS)andb.K2O–SiO2(PeccerilloandTaylor,1976)diagrams edtotheventarea.Theintervalofvolcanicactivityissimilarforboth forthestudiedrocksamples.ThesamplelabelsreportedintheFig.6amisstheinitialzero. volcanoes(Fig.8).Therhyolitelavaexposedat~4kmfromtheeastern border of Yuntdağı volcano represents one of the initial eruptions (17.52±0.67Ma).Itistonotethecontemporaneousactivityinboth characterizesmostlytheintrusiverocks.TheChondriteCI-normalized edificesandthefactthattheyoungestdatedrocks(14.94±0.58Ma; REEpatterns(Fig.5c,d)shownoessentialdifferencesbetweensamples, 15.02±1.75Ma)arerepresented,inbothcases,byintrusiverocks allhavingaminorEunegativeanomaly(Eu/Eu*=0.67–0.81)and insidethecraterarea.Theyrepresenttheupperfeedingsystem,and increasedLREE,highestfortheevolvedrhyolite(069). theirpresenceatthesurfacesuggestsintensiveerosionmostlyfacilitat- edbythepervasivehydrothermalalterationofsomeofit. 6.Timingofthevolcanism Theerosionismainlyvisibleonthelavasanddomesnearthecrater border.Differentialerosionofthecraters,openedandstronglyeroded Resultsofdatingonindividualsamplesmaynotalwaysbeindicative towardtheSWresultedviablockfaultingalongaNW–SEsystemand oftheageoftherockthatmightbeaffectedbyyoungerprocesses,such enhancederosionduetoaninitiallowerandlargerfan-likealluvial asalteration,lossorincorporationofexcessradiogenicargon,etc.Sever- drainagesysteminsidethecraters(e.g.Schummetal.,2000;Fielitz alwayshavebeenusedtoeliminatepossibleerrorsintheageassign- andSeghedi,2005;Tibaldietal.,2006).Ifwetakeintoaccountamissing mentofrocks.Besideweselectedfreshsamplesourdatasetwasnot ageintervalofca.0.7±0.62Mafromtheyoungestintrusiveinthecra- dependonsinglesampleagedetermination.Aconsistentsetofresults, terareauptothefirstdatedlavaflowsoftheproximalconeassociation inthiscasefifteen,diminishesthepossibilityoferrorintheageassign- (15.71±1.94MainYamanlarand15.79±0.59MainYuntdağı)thatis ment.Sincewedidnotgetsignificantcontroversialresultsitwasnot largerthanassumedmainrepose-timeof~40kabetweensupposed necessarytodatevariousgravityandmagneticfractionsofthesamples eruptions(Fig.8),thismaybesusceptibletorepresentalreadyeroded andconstructisochronstoeliminatetheinfluenceofradiogenicArgon effusivepartatthetopedifices.SincetheK–Aragesarguetoarather lossorexcess.FifteenK–Aragedata(7forYamanlarand8forYuntdağı) continuousvolcanicactivity(Fig.8),itmaybesuggestedthatmagma arepresentedhereinordertorevealthepictureofvolcanicevolution outputvolumeresultedfromaconstantnumberofactiveperiodsin duringtheformationofcompositevolcanoes(Table2).Sampleswere eachvolcanoeshistory,separatedbyrepose-timeintervalsthatcould collectedfromthecentralpartofthevolcanoesrepresentedbyintrusive beintheorderof~405years. rocks,fromthelavafloworerodeddomestructureslocatedatthe topographic edges of the former crater areas (Figs. 1, 4) and from 7.2.Petrogeneticconsiderations cone-building lava flows. In one case, a pyroclastic flow deposits (blockandashflow)fromseveralkmoutsidethevolcanowasalso Recent studies indicate that Early–Middle Miocene medium- to sampled(seethesamplesitedistributioninFig.1). high-Kseriesandesitestorhyolitesvolcanicrocksalongthestrike-slip There are three ages with 1σ precision higher than 1 Ma (two dominatedtheİzmir–BalıkesirTransferZonethatincludeourstudy belongstoYamanlarandonetoYuntdağı)howevertheseagesfallin area, were most probably derived from mixing between mantle- the interval of volcanic activity (Table 2), suggesting that they are derivedmagmasandlowercrustalmeltsandformedthemainsource meaningful and worth to be taken into consideration. The greater ofthemostprimitivemedium-tohigh-Kandesiticrocks.Subsequent 80 I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 Fig.7.aandb:PrimitiveMantle(PM)-normalizedandcandd:CI-chondritenormalizedREEdiagramsforYamanlarandYuntdağıvolcanoes.NormalizingfactorsarefromSunand McDonough(1989).SymbolsasinFig.6. fractionalcrystallization(FC)and/orassimilation-fractionalcrystalliza- contentsmaybeindicativeofextensivefractionationofclinopyroxene, tion(AFC)processesthatoccurredareresponsibleforthewiderange butincreasingtheMgOuptoSiO b62%maybeusedtorefusethis 2 of chemical andpetrographic types (Ersoy et al., 2012a;Ersoy and interpretation.Inthiscase,adecreaseinFe O andTiO ,VandScmay 2 3 2 Palmer,2013). belinkedtoFe–Tioxidefractionation.Extensiveplagioclasefraction- Ournewgeochemicaldataareinagreementwiththishypothesis ationisclearlyevidencedbydecreasingCaO,Sr,Eu,andEu/Eu*.CaO andwewillattempttodemonstratethis.Fromageochemicalpointof depletion(anddecreaseinCaO/Al O )canalsobelinktoplagioclase+ 2 3 view,alltherocksareevolved,showinginthespiderdiagram/primitive apatitefractionation,insteadofremovalofclinopyroxene.Smalldegree mantleanegativeanomalyforPandTithatmaycharacterizeforpartial apatite fractionation is also supported by the decreasing in REEs, melting(PM)ofmetasomaticmantlesourcesorfractionalcrystalliza- especiallyinLREE,suchasCe.Theseobservationsledustoconclude tionprocesses(FC)(Fig.7a,b),withorwithoutcrustalcontamination. thatthefractionatingassemblageresponsibleforthedifferentiation Isotopedatafromthestudyareasconfirmtheimplicationofcrustal oftheYamanlarandYuntdağıvolcanicscanbetakenasplagioclase+ assimilation(e.g.Agostinietal.,2010;Ersoyetal.,2012a).FCand/or biotite + Fe–Ti-oxides + apatite. Additionally, small amounts of PMisalsosuggestedbyhighLREE/HREE(Fig.7c,d)andasmallnegative clinopyroxenemayalsobeincluded. Euanomalywhichlikelyinfersplagioclasefractionation,typicalforan Byusing anassemblageofplagioclase(70%)+biotite(13%)+ uppercrustmagma storage system. ThesimilarEu anomaly of the clinopyroxene(5%)+magnetite(5%)+apatite(5%),Sr/Vvs.Vsystem- rhyolite(069)suggestsimilarsourceasforandesitesandimportant aticsofthevolcanicrockshavebeenmodeledtotestthevalidityofthe fractionationprocessesandrelatesthemto“wettypecold-oxidized fractional crystallization processes. In Fig. 10, the PETROMODELER rhyolites”thatmayderivefromasubduction-derivedmetasomatized program(Ersoy,2013)isusedwiththeincrementsof10%andthe mantlesource(e.g.,BachmannandBergantz,2008). partitioncoefficientscompiledfromGERMpartitionCoefficientdata TodemonstratetheroleofFCprocessesinYamanlarandYuntdağı base(www.http://earthref.org/).Theresultsshowthattheandesitic volcanoeswemadefurthergroupofHarkerdiagrams(Fig.9).Increase rocksmayhavebeenproducedby0–30%fractionalcrystallizationof inMgO,fortherockswithSiO b62,andabsenceofNidepletionwith themostprimitivesample(sample70withlowestsilicacontent).The 2 respecttoincreasingSiO ,suggestthatolivinewasnotinvolvedinthe rhyoliticsample(69),ontheotherhand,requireupto80%fraction- 2 fractionatingphases.BroaddecreaseinBacoupledwithdecreasing ation.Itisalsotonotethatcrustalcontaminationandmixingprocesses MgOfortherockswithSiO N62%maybeexplainedbyfractionation mayhaveoperatedduringthisfractionation,butitisnotpossibleto 2 ofMgandK-bearingphasesuchasbiotiteoramphibole.Inthiscase, monitor this effect, since there are no available isotopic data from lateralvariation(orevenslightlydecreasing)inNbisnotcompatible thesesamples. withamphibolefractionation.Furthermore,thehighlyfractionated Ratios of high field strength elements (HFSE) such as Nb and (high-SiO )rhyolitesamplehasthehighestNbcontent,refusingthe Zrcanprovideinsightintovariationsinmagmasourcecomposition 2 amphibolefractionation.Therefore,decreasingMgOcontentsofthe (e.g.Davidson,1996;Singeretal.,1996).NbandZraredepletedin rockswithSiO N62%canbeexplainedbybiotitefractionation.Ade- subduction-related magmas and are assumed to be dominantly 2 creaseinCaO/Al O ratiocoupledwithdecreasingV,Sc,CaOandTiO mantle-derived, being relatively immobile under hydrothermal 2 3 2 I.Seghedietal./JournalofVolcanologyandGeothermalResearch291(2015)72–85 81 Fig.8.DiagramofK/ArageswithanalyticalerrorsandSiO2vsK/AragesinYamanlarandYuntdağıvolcanoes.SymbolsasinFig.6. conditionsandstronglyfractionatedonlyduringmeltingormagma- etal.,2010;Ersoyetal.,2012a),somostprobablythesourceareais mixingprocesses(Thirlwalletal.,1994;Davidson,1996).Different situatedatthemantle–crustboundary. Nb/Zrratiosaregenerallyinterpretedintermsofvariationsinsource Nevertheless,therearesomeadditionalpetrogeneticconsiderations compositionorchangesindegreeofpartialmeltingofthemantle, that derive from a combined petrographic and geochemical study sincelineartrendsofNbenrichmentsuggestfractionalcrystallization inbothvolcanoes.Sometexturalcharacteristicsofplagioclase,amphi- (e.g.Davidson,1996).TheNb/Zr–Nbdiagramformostprimitiverock boleandbiotitecangiveconstraintsonadditionalmagmachamber (~56wt.%SiO2)(Fig.11)showsZr–Nbvaluesstartingfrom~0.6– processes. 0.7,notfarfromatypicalMORBvalue,butclosertotheLowerand Thecommonpresenceofirregularandroundedmarginswhichare Middle Crust average values (Rudnick and Fountain, 1995). The observedforalargenumberofplagioclasecrystals,besidecombination plots follow both linear trends, starting from the most primitive withsievetextures(Fig.5,samples053,054and060)pointstomargin- rocksfoundinYamanlarandYuntdağı,inasmallrangealongthe almeltingofthesecrystalsandconsequentlyaprocessofdisequilibrium mantlesourcecompositionorchangesindegreeofpartialmelting (inthiscasethermal(e.g.NelsonandMontana,1992).Thismayindicate trendandmostlydevelopedalongthehorizontaltrendtowardmore an influx of hotter magma inflow into a shallow, partially evolved differentiatedrockssuggestingfractionalcrystallization,havingat magma storage system that implies mixing. The plagioclases with theendoftherangethesolitaryrhyolitesample(69),withhigher irregularandroundedmarginsindicatethatre-equilibriumwasnot Nbcontents. reached, suggesting that eruption occurred soon after mixing. The Theseobservationsareinagreementwithfractionalcrystallization massbreakdownoxidationofamphibolesisalsoasignofthermody- modeling(Fig.10).Anotherimportantobservationisthattherhyolite namicdisequilibrium,whichmayberelatedtotheincreaseinoxygen sample (Yuntdağı) by showing similar Nb/Zr trend as the most fugacitywithincreasingtemperaturewhichfavorsdehydroxylation primitiverockinthestudiedareaisolder(17.52±0.67Ma)thanthe (Grahametal.,1984).Suchfeaturesofincreasingtemperaturecanbe otherrocksinYuntdağı,buthassimilaragewithandesitesofYamanlar mosteasilyexplainedintermsofmagmamixing(Fig.5,sample065). volcano.Thismaysuggestthattherhyolitecouldderiveviafractional Thereactionrimsofamphibolesandbiotites,ontheotherhand,suggest crystallizationprocessesfromthesimilarsourceasotherandesites, thatH Oisleavingthesystemduetoloweringpressure. 2 notfromadifferentone.Withoutisotopedataisdifficulttosaythat In the Peccerillo and Taylor (1976) diagram, the scatter plot thesource,assuggestedalsobyFig.11,isaslightlyenrichedmantle distributionshowinglargeK Ovariation(2–4%)inarelativelylarge 2 sourceorlowercrust,orabouttheinfluenceofassimilationprocesses, rangeofSiO —56–65%mayalsoconfirmthelocaluppercrustalmixing 2 however,asalreadymentioned,thepublisheddatawithisotopesin processes(Fig.6a).ThedecreaseinSiO at~16.5Ma(Fig.8)forboth 2 the surrounding areas are suggesting that both mantle and crustal volcanoes could be interpreted in terms of mixing of an andesitic melts are implicated in generation of these magmas (e.g. Agostini magmawithaleastevolvedbasalticandesite.Overall,theidentification
Description: