ebook img

Complex Time-Delay Systems: Theory and Applications PDF

336 Pages·2010·3.333 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex Time-Delay Systems: Theory and Applications

Springer Complexity Springer Complexity is an interdisciplinary program publishing the best research and academic-levelteachingonbothfundamentalandappliedaspectsofcomplexsystems– cutting across all traditional disciplines of the natural and life sciences, engineering, economics,medicine,neuroscience,socialandcomputerscience. ComplexSystemsaresystemsthatcomprisemanyinteractingpartswiththeabilityto generateanewqualityofmacroscopiccollectivebehaviorthemanifestationsofwhich are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” sit- uationsliketheclimate,thecoherentemissionoflightfromlasers,chemicalreaction- diffusion systems, biological cellular networks, the dynamics of stock markets and of theinternet,earthquakestatisticsandprediction,freewaytraffic,thehumanbrain,orthe formationofopinionsinsocialsystems,tonamejustsomeofthepopularapplications. Althoughtheirscopeandmethodologiesoverlapsomewhat,onecandistinguishthe followingmainconceptsandtools:self-organization,nonlineardynamics,synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphsandnetworks,cellularautomata,adaptivesystems,geneticalgorithmsandcom- putationalintelligence. ThetwomajorbookpublicationplatformsoftheSpringerComplexityprogramare themonographseries“UnderstandingComplexSystems”focusingonthevariousappli- cationsofcomplexity,andthe“SpringerSeriesinSynergetics”,whichisdevotedtothe quantitativetheoreticalandmethodologicalfoundations.Inadditiontothebooksinthese twocoreseries,theprogramalsoincorporatesindividualtitlesrangingfromtextbooks tomajorreferenceworks. EditorialandProgrammeAdvisoryBoard DanBraha,NewEnglandComplexSystemsInstituteandUniversityofMassachusettsDartmouth,USA PéterÉrdi,CenterforComplexSystemsStudies,KalamazooCollege,USAandHungarianAcademyof Sciences,Budapest,Hungary KarlFriston,InstituteofCognitiveNeuroscience,UniversityCollegeLondon,London,UK HermannHaken,CenterofSynergetics,UniversityofStuttgart,Stuttgart,Germany JanuszKacprzyk,SystemResearch,PolishAcademyofSciences,Warsaw,Poland ScottKelso,CenterforComplexSystemsandBrainSciences,FloridaAtlanticUniversity,BocaRaton,USA Ju¨rgenKurths,NonlinearDynamicsGroup,UniversityofPotsdam,Potsdam,Germany LindaReichl,CenterforComplexQuantumSystems,UniversityofTexas,Austin,USA PeterSchuster,TheoreticalChemistryandStructuralBiology,UniversityofVienna,Vienna,Austria FrankSchweitzer,SystemDesign,ETHZurich,Zurich,Switzerland DidierSornette,EntrepreneurialRisk,ETHZurich,Zurich,Switzerland Understanding Complex Systems FoundingEditor:J.A.ScottKelso Future scientific and technological developments in many fields will necessarily dependuponcomingtogripswithcomplexsystems.Suchsystemsarecomplexin boththeircomposition–typicallymanydifferentkindsofcomponents interacting simultaneouslyandnonlinearlywitheachotherandtheirenvironmentsonmultiple levels–andintherichdiversityofbehaviorofwhichtheyarecapable. The Springer Series in Understanding Complex Systems series (UCS) pro- motes new strategies and paradigms for understanding and realizing applications of complex systems research in a wide variety of fields and endeavors. UCS is explicitlytransdisciplinary.Ithasthreemaingoals:First,toelaboratetheconcepts, methodsandtoolsofcomplexsystemsatalllevelsofdescriptionandinallscientific fields,especiallynewlyemergingareaswithinthelife,social,behavioral,economic, neuro-andcognitivesciences(andderivativesthereof);second,toencouragenovel applicationsoftheseideasinvariousfieldsofengineeringandcomputationsuchas robotics, nano-technology and informatics; third, to provide a single forum within whichcommonalitiesanddifferencesintheworkingsofcomplexsystemsmaybe discerned,henceleadingtodeeperinsightandunderstanding. UCSwillpublishmonographs,lecturenotesandselectededitedcontributions aimedatcommunicatingnewfindingstoalargemultidisciplinaryaudience. Fatihcan M. Atay Editor Complex Time-Delay Systems Theory and Applications 123 Editor FatihcanM.Atay MaxPlanckInstituteforMathematics intheSciences Inselstr.22-26 04103Leipzig Germany [email protected] ISBN978-3-642-02328-6 e-ISBN978-3-642-02329-3 DOI10.1007/978-3-642-02329-3 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2010920732 (cid:2)c Springer-VerlagBerlinHeidelberg2010 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesignGmbH,Heidelberg Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface One of the major contemporary challenges in both physical and social sciences is modeling, analyzing, and understanding the self-organization, evolution, behavior, and eventual decay of complex dynamical systems ranging from cell assemblies tothehumanbraintoanimalsocieties.Themulti-facetedproblemsinthisdomain require a wide range of methods from various scientific disciplines. There is no question that the inclusion of time delays in complex system models considerably enriches the challenges presented by the problems. Although this inclusion often becomesinevitableasreal-worldapplicationsdemandmoreandmorerealisticmod- els,theroleoftimedelaysinthecontextofcomplexsystemssofarhasnotattracted theinterestitdeserves.Thepresentvolumeisanattempttowardfillingthisgap. Thereexistvarioususefultoolsforthestudyofcomplextime-delaysystems.At theforefrontisthemathematicaltheoryofdelayequations,arelativelymaturefield inmanyaspects,whichprovidessomepowerfultechniquesforanalyticalinquiries, alongwithsomeothertoolsfromstatisticalphysics,graphtheory,computerscience, dynamicalsystemstheory,probabilitytheory,simulationandoptimizationsoftware, and so on. Nevertheless, the use of these methods requires a certain synergy to addresscomplexsystemsproblems,especiallyinthepresenceoftimedelays. Thefollowingseriesofchapterscombineexpertisefrommathematics,physics, engineering, and biology to address several current issues from the forefront of research in the field. To unify the various problems and approaches presented, the language of dynamical systems is heavily used throughout the book. Dynamical systems, be it in isolation or in interaction with other systems, can display a rich spectrum of behavior. At one end of the spectrum is the simplest point attractor, namelyastableequilibrium.Despiteitsdynamicalsimplicity,itcommandsconsid- erable interest from a control perspective, since it represents the desired behavior in many applications. However, stable equilibria can also spontaneously arise as a resultofcoupling,particularlyindelayednetworks.Theso-calledamplitudedeath referstotheemergenceofsuchstabilityinanotherwiseoscillatoryorevenchaotic network. In some fields like chaos control, the aim may be to stabilize a periodic solution instead of a fixed point. Further along the ranks is synchronization phe- nomenainitsmanyforms,wheretheattractoristypicallyasubsetofthediagonal of the system’s state space. Nearby such orderly behavior are regimes of cluster formationandincoherence, aswellastheco-existence ofseveralattractors.Order v vi Preface and disorder can even exist in the same system at different spatial locations, as in the case of chimera solutions. Though sequences of bifurcations as the parameter values or inputs are varied, the system can visit the whole plethora of dynamical regimes,onlyafractionofwhichmaybeknownoramenabletoexistingtechniques of analysis. This is certainly a challenging field both from theoretical and applied perspectives. Thepresentvolumestartswithachapteronthecollectivedynamicsofcoupled oscillators, authored by Sen, Dodla, Johnston, and Sethia, which already exhibits the range of dynamics from equilibrium to chimera solutions. Chapter 2 by Atay focuses on the suppression of oscillations by time delays infeedback systems and complex networks, in particular making the connection between stability and net- worktopology.Chapter3byNiculescu,Michiels,Gu,andAbdallahexaminessta- bilityof equilibria by delayed output feedback from a control-theoretical point. In Chap.4,authoredbySchöll,Hövel,Flunkert,andDahlem,theemphasisisshifted tothestabilizationofperiodicsolutions,studyingarangeofapplicationsfromlasers tocoupledneurons.TheinvestigationofneuralsystemsiscontinuedinChap.5by Hutt,thistimewithadifferentnetworkmodel,namelyacontinuumfielddescription ofcollectiveneuralactivity.Chapter6byLongtinaddressesstochasticdynamicsof neurons, after a discussionof stochastic delay differential equations. Chapter 7 by Lu and Chen gives a comprehensive coverage of the stability of neural networks. Chapter 8 by Crauste looks at stability in systems with distributed delays, with an application to oscillations in stem cell populations. Finally, Chap. 9 by Sipahi and Niculescu gives a survey and latest results on a novel application to complex systems,namelytime-delayedtrafficflow. This book is aimed at researchers and students from all disciplines who are interested in time-delay systems. The chapters contain the state-of-the-art in their respectivefields,inadditiontothecurrentresearchofthecontributors.However,the emphasishasbeentomakethebookaself-containedvolumebyprovidingsufficient introductory material in every chapter, as well as ample references to the relevant literature.Inthisway,thereaderwillbeexposedtotherecentresultsandatthesame timebeprovidedwithdirectionsforfurtherresearch. Leipzig, FatihcanM.Atay January2010 Contents 1 AmplitudeDeath,Synchrony,andChimeraStatesinDelayCoupled LimitCycleOscillators .......................................... 1 AbhijitSen,RamanaDodla,GeorgeL.Johnston,andGautamC.Sethia 1.1 Introduction ................................................ 1 1.2 AMinimalCollectiveModel .................................. 3 1.2.1 Timedelayeffects..................................... 6 1.3 N-OscillatorModels ......................................... 15 1.3.1 GlobalCoupling ...................................... 16 1.3.2 NearestNeighborCoupling............................. 18 1.3.3 Non-LocalCoupling................................... 26 1.4 SummaryandPerspectives .................................... 40 References ...................................................... 41 2 Delay-InducedStability:FromOscillatorstoNetworks.............. 45 FatihcanM.Atay 2.1 Introduction ................................................ 45 2.2 ABriefSynopsisofAveragingTheory .......................... 46 2.3 StabilitybyDelayedFeedback................................. 48 2.4 AmplitudeDeathinNetworksofOscillators ..................... 52 2.5 DiffusivelyCoupledNetworks................................. 55 2.6 Discrete-TimeSystems ....................................... 58 2.7 ConcludingRemarks......................................... 60 References ...................................................... 61 3 DelayEffectsonOutputFeedbackControlofDynamical Systems ........................................................ 63 Silviu-IulianNiculescu,WimMichiels,KeqinGu, andChaoukiT.Abdallah 3.1 Introduction ................................................ 63 3.1.1 ExistingMethodologies ................................ 64 3.1.2 ProblemFormulationandRelatedRemarks ............... 66 3.1.3 MethodologyandApproach ............................ 67 vii viii Contents 3.2 MainResults................................................ 67 3.2.1 Notation............................................. 67 3.2.2 StabilizabilityintheDelayParameter .................... 70 3.2.3 ControllerDesign ..................................... 75 3.3 IllustrativeExamples......................................... 76 3.3.1 Second-OrderSystem.................................. 77 3.3.2 StabilizingaChainofOscillators ........................ 78 3.3.3 MultipleCrossingFrequenciesToward(in)Stability ........ 80 3.4 ConcludingRemarks......................................... 82 References ...................................................... 83 4 Time-DelayedFeedbackControl:FromSimpleModelstoLasers andNeuralSystems ............................................. 85 Eckehard Schöll, Philipp Hövel, Valentin Flunkert, andMarkusA.Dahlem 4.1 Introduction ................................................ 85 4.2 Time-DelayedFeedbackControlofGenericSystems.............. 87 4.2.1 StabilizationofUnstableSteadyStates ................... 87 4.2.2 AsymptoticProperties .................................100 4.2.3 Beyond the Odd Number Limitation of Unstable PeriodicOrbits....................................... 107 4.2.4 StabilizingPeriodicOrbitsNearaFoldBifurcation .........116 4.3 Time-DelayedControlofOpticalSystems .......................122 4.3.1 Stabilizing Continuous-Wave Laser Emission byPhase-DependentCoupling.......................... 123 4.3.2 NoiseSuppressionbyTime-DelayedFeedback ............125 4.4 Time-DelayedControlofNeuronalDynamics ...................130 4.4.1 ModelofTwoCoupledNeurons.........................131 4.4.2 ControlofStochasticSynchronization....................133 4.4.3 DynamicsofDelay-CoupledNeurons ....................136 4.4.4 DelayedSelf-FeedbackandDelayedCoupling.............140 References ......................................................144 5 FinitePropagationSpeedsinSpatiallyExtendedSystems............151 AxelHutt 5.1 Introduction ................................................151 5.2 DynamicsintheAbsenceofNoise .............................152 5.2.1 ANeuralFieldModel .................................152 5.2.2 TheGenericModel....................................158 5.3 DynamicsInThePresenceofNoise ............................168 5.3.1 GeneralStabilityStudy ................................168 5.3.2 ApplicationtoaSpecificModel .........................171 References ......................................................175 Contents ix 6 StochasticDelay-DifferentialEquations............................177 AndréLongtin 6.1 Introduction ................................................177 6.2 TheFundamentalIssue .......................................178 6.3 LinearSDDEs ..............................................180 6.4 SmallDelayExpansion.......................................181 6.5 ReductionTechniques ........................................184 6.5.1 ReducingtheDimensionality ...........................184 6.5.2 CrossingTimeProblems ...............................187 6.6 StochasticDelayedNeurodynamics.............................188 6.6.1 NeuralNoiseandDelays ...............................188 6.6.2 NeuralControl .......................................189 6.6.3 NeuralPopulationDynamics............................189 6.6.4 SimplifiedStochasticSpikingModelwithDelay ...........191 6.7 Conclusion .................................................192 References ......................................................193 7 GlobalConvergentDynamicsofDelayedNeuralNetworks...........197 WenlianLuandTianpingChen 7.1 Introduction ................................................197 7.2 StabilityofDelayedNeuralNetworks...........................201 7.2.1 Preliminaries .........................................201 7.2.2 DelayedHopfieldNeuralNetworks ......................204 7.2.3 DelayedCohen–GrossbergCompetitiveandCooperative Networks ........................................... 209 7.3 PeriodicityandAlmostPeriodicityofDelayedNeuralNetworks ....217 7.3.1 DelayedPeriodicHopfieldNeuralNetworks...............218 7.3.2 Delayed Periodic Cohen–Grossberg Competitive andCooperativeNeuralNetworks....................... 221 7.3.3 DelayedAlmostPeriodicHopfieldNeuralNetworks........226 7.4 DelayedNeuralNetworkwithDiscontinuousActivations ..........232 7.4.1 Preliminaries .........................................234 7.4.2 StabilityofEquilibrium ................................241 7.4.3 ConvergenceofPeriodicandAlmostPeriodicOrbits........245 7.5 ReviewandComparisonofLiterature...........................252 References ......................................................258 8 StabilityandHopfBifurcationforaFirst-OrderDelayDifferential EquationwithDistributedDelay ..................................263 FabienCrauste 8.1 Introduction ................................................263 8.2 DefinitionsandHopfBifurcationTheorem.......................265 8.3 StateoftheArtandObjectives.................................269 8.3.1 TheClassicalLinearDiscreteDelayDifferentialEquation ...269

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.