ebook img

Complex Structure of Triangular Graphene: Electronic, Magnetic and Electromechanical Properties PDF

0.74 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex Structure of Triangular Graphene: Electronic, Magnetic and Electromechanical Properties

Complex Structure of Triangular Graphene: Electronic, Magnetic and Electromechanical Properties Motohiko Ezawa Department of Applied Physics, University of Tokyo, Hongo 7-3-1, 113-8656, Japan We have investigated electronic and magnetic properties of graphene nanodisks (nanosize triangular graphene) as well as electromechanical properties of graphene nanojunctions. Nanodisks are nanomagnets madeofgraphene,whicharerobustagainstperturbationsuchasimpuritiesandlatticedefects,wheretheferro- 1 magneticorderisassuredbyLieb’stheorem.Wecangenerateaspincurrentbyspinfilter,andmanipulateitby 1 aspinvalve,aspinswitchandotherspintronicdevicesmadeofgraphenenanodisks. Wehaveanalyzednan- 0 odiskarrays,whichhavemulti-degenerateperfectflatbandsandareferromagnet.Byconnectingtwotriangular 2 graphenecorners,weproposeananomechanicalswitchandarotator,whichcandetectatinyanglerotationby measuringcurrentsbetweenthetwocorners. BymakinguseofthestraininducedPeierlstransitionofzigzag n a nanoribbons,wealsoproposeananomechanicalstretchsensor,inwhichtheconductancecanbeswitchoffby J ananometerscalestretching. Keyword: graphene, nanoribbons, nanodisks, graphene-nanodisk array, quasiferromagnet, spintronics, 9 1 nanomechanics,electromechanics ] l I. INTRODUCTION l a h - Graphene,whichisaone-layerthickhoneycombstructure s ofcarbon,isanamazingmaterial1.Electronsexhibithighmo- e m bility and travelmicrondistances withoutscattering at room temperature. It is a very thin and strong material, showing . t veryhighthermalconductivity.Grapheneisnowamaintopic a m ofnanoscience. Much attention has been focused on graphene nanorib- FIG.1. (a)Geometricconfigurationofatrigonalzigzagnanodisk. - d bons, which is a one-dimensional ribbon-like derivatives of ThenanodisksizeisdefinedbyN =Nben−1withNbenthenumber n ofbenzenesononesideofthetrigon.Here,N =5.TheA(B)sites graphene.Theyhavevariousbandstructuredependingonthe o onthelatticeareindicatedbyreddots(whilecircles). Theelectron edge and width. In particular, zigzag gaphene nanoribbons c densityisfoundtobelocalizedalongtheedges. (b) Thenanodisk- [ showedgeferromagnetismduetoalmostflatlow-energyband leadsystem. Ananodiskisconnectedtotherightandleftleadsby at the Fermilevel. There are a profusionof paperson them, tunnelingcoupling.Itmayactasaspinfilter. 1 among which we cite some of early works2–4. Another ba- v sic elementof graphenederivativesis a graphenenanodisk5. 2 1 It is a nanometer-scaledisk-likematerialwhich has a closed II. ENERGYSPECTRUM 6 edge. It may be considered as a giant molecule made of 3 aromatic compound. It is possible to manufacture them by Wecalculatetheenergyspectrumofthenanodiskbasedon . etchingagraphenesheetbyNinanoparticles6. Amongthem, 1 thenearest-neighbortight-bindingmodel,whichhasprovedto 0 trigonalzigzag nanodiskshave a novelelectric propertythat describeaccurately the electronic structureof graphene, car- 1 thereexisthalf-filledzero-energystatesinthenon-interacting bon nanotubes, graphene nanoribbons and other sp2 carbon 1 regime, as was revealed first by the tight-binding model5 materials. TheHamiltonianisdefinedby : and then by first-principle calculations7–9. Various remark- v Xi asibvleelyprinopaesrteireisesooffnwaonrokdsi5s,k10s–1h2a.vNeabneoedniskinivseasltsigoarteefdererxetdento- H0 = εic†ici+ tijc†icj, (1) r as nanoisland7, nanoflake9,13,14, nanofragment15 or graphene Xi hXi,ji a quantumdot16,17. where ε is the site energy, t is the transfer energy, and c† i ij i Nanoribbons and nanodisks correspond to quantum wires is the creation operator of the π electron at the site i. The and quantum dots, respectively. They are candidates of fu- summation is taken over all nearest neighboring sites hi,ji. turecarbon-basednanoelectronicsandspintronicsalternative Owing to their homogeneous geometrical configuration, we to silicon devices. A nanoribbon-nanodisk complex can in maytakeconstantvaluesfortheseenergies,ε =ε andt = i F ij principle be fabricated, embodying various functions, only t≈2.70eV.Thereexistsoneelectronperonecarbon,andthe byetchinga graphenesheet. Furthermore,grapheneis com- band-fillingfactoris1/2. Then,thediagonaltermyieldsjust mon material and ecological. In this paper, exploring elec- a constant, ε N , and can be neglected in the Hamiltonian, F C tronic,magneticandelectromechanicalpropertiesoftrigonal whereN isthenumberofcarbonatoms. C zigzaggraphenenanodisks[seeFig.1],weproposesomeap- WedefinethesizeN ofananodiskbyN =N −1,where ben plicationofnanodisk-nanoribboncomplextonanoelectronics, N isthenumberofbenzenesononesideofthetrigonasin ben spintronicsandelectromechanicsdevices Fig.1(a).Itcanbeshown5thatthedeterminantassociatedwith 2 theHamiltonian(1)hassuchafactoras det[εI −H(N )]∝εN, (2) C implying N-fold degeneracy of the zero-energy states. The gapenergyisaslargeasafeweVfornanodiskswithsmallN, where it is a goodapproximationto investigatethe electron- electroninteractionphysicsonlyinthezero-energysector,by projecting the system to the subspace made of those zero- energystates.AsweshallseeinSectionV,theapproximation FIG. 2. Probability density flow for the zero-energy states in the remainstobegoodevenforthosewithlargeN. nanodiskwithN = 7. Therepresentationofthetrigonalsymmetry group C3v is indicated in the parenthesis. A vortex appears at the centerofmassforthestatebelongstotheE(doublet)representation. Thewindingnumberatthecenteris2inthestate|k+i. III. TRIGONALSYMMETRY n ThesymmetrygroupofatrigonalnanodiskisC3v,whichis groupedaccordingto the representationof the trigonalsym- generatedbythe2π/3rotationc3andthemirrorreflectionσv. metrygroupC3v asfollows, Ithastherepresentation{A1,A2,E}. TheA1 representation TiusnhidenevAra2σrivrae.nptTruehnseedneEtrattrhieoepnrreoisstaeintnivtoaantriioca3nntaauncndqdutehirreecsm3±iarn2rdoπra/rn3etflipsehycamtsiomensehtσrivifct. AA21 ((ssiinngglleett)):: ||kknn00ii−+||−−kknn00ii,, ) for kn0 = 63nN+a3π, 6n±1 under the 2π/3 rotation. The A1 and A2 are 1-dimensional E (doublet): |k±i, |−k±i, for k± = π. representations(singlets)andtheE isa2-dimensitionalrep- n n n 3Na (6) resentation(doublet).Thesepropertiesaresummarizedinthe Thezero-energystateisindexedbythequantizedwavenum- followingcharactertable: beras|kαiwith(6). n Toseethemeaningofthewavenumberkαmoreindetail12, C3v e 2c3 3σv wehavecalculatedtheprobabilitydensityflnow, A1 1 1 1 (3) A2 1 1 −1 Ai(x,y)=−iψ∗(x,y)∂iψ(x,y) (7) E 2 −1 0 forstates|kαi,whichweshowforthecaseofN =7inFig.2. n Weobserveclearlyatextureofvortices.Thesevorticesmani- The zero-energy sector consists of N orthonormal states. festthemselvesasmagneticvorticesperpendiculartothenan- We are able to index them by the wave number k along odiskplanewhentheelectromagneticfieldsarecoupled. the edge. It is a continuousparameter for an infinitely long ThetotalwindingnumberN iscalculatedby grapheneedge. Accordingto the tight-binding-modelresult, vortex theflatbandemergesfor 1 A (x,y) N = dx i =N +m−1, (8) vortex 2π i |ψ(x,y)|2 −π ≤ak <−2π/3 and 2π/3<ak ≤π. (4) I with m = 0,1,2,··· ,⌊(N −1)/2⌋ in the size-N nanodisk, We focusonthe wavefunctionψ(x,y)atoneofthe A sites where ⌊a⌋ denotes the maximum integer equal to or smaller onanedge,andinvestigatethephaseshiftwhenwestepover than a. We find N = 3n for k0, N = 3n+1 for totheneighboringsite[seeFig.1(a)].ThereareN linksalong vortex n vortex k− and N = 3n+2 for k+. The wave functionsare one edge of the size-N nanodisk, for which we obtain the n+1 vortex n classifiedintermsofmoduloofthetotalwindingnumber:The phaseshiftNak,whereaisthespacingbetweentheneighbor- wavefunctionbelongsto theE-representationandhaschiral ingAsitesandk isthewavenumberalongtheedge. Onthe edgemodeforN ≡ 1,2(mod3),andbelongstotheA- otherhand,thephaseshiftisπ atthecorner. Thetotalphase vortex representationandhasnon-chiraledgemodeforN ≡ 0 shiftis3Nak+3π,whenweencirclethenanodiskonce. By vortex (mod3).Thewindingnumberofthevortexatthecenterofthe requiringthesingle-valuenessofthewavefunction,itisfound nanodiskis0,1,2inthestate|k0i,|k−i,|k+i,respectively. tobequantizedas n n n ak =±[(2n+1)/3N +2/3]π, (5) n IV. QUASIFERROMAGNET whereit followsthat0 ≤ n ≤ (N −1)/2fromthe allowed region(4)ofthewavenumber. The total spin of the groundstate is determinedby Lieb’s Wemaygroupthestatesaccordingtothetrigonalsymme- theorem. The total spin is given by the difference of the try (3). With respectto the rotation there are three elements A site and the B site, S = 21|NA−NB|, where NA and c03,c3,c23,whichcorrespondto1,e2πi/3,e4πi/3. Accordingly, NB are number of A site and B site. Here, S = 12N in the phase shift of one edge is 0, 2π/3, 4π/3. The state is the size-N nanodisk, where N = (N +1)(N +6)/2 and A 3 FIG.4. Thedensityofstatesof(a)graphene,(b)graphenenanorib- FIG.3. Thermodynamical propertiesofthenanodisk-spin system. bonand(c)graphenenanodisk. Thehorizontalaxisistheenergyε (a)ThespecificheatC inunitofkBN. (b)Thesusceptibilityχin inunitoft. unit of Sg. The sizeis N = 1,2,22,···210. Thehorizontal axis standsforthetemperatureT inunitofJN/k .Thearrowrepresents B thephasetransitionpointTcinthelimitN →∞. as illustrated in Fig.4. Hence, together with spin degrees of freedom,itbehavesas D(ε)=2cN |ε|+2Nδ(ε), (9) N =(N+2)(N+3)/2.Henceweexpectananodisktoact C B as a ferromagnet. The ferromagnetic ground state is robust withacertainconstantfactorc. Thelineartermisduetothe against perturbationssuch as randomnessand lattice defects bulk states, and the Dirac delta function term is due to the sinceitisassuredbyLieb’stheorem.Thisfeaturebringsouta edge states. The important point is that the edge-state peak remarkablecontrastbetweennanodisksandnanoribbons.The isclearlydistinguishedfromtheDOSduetothebulkpart. It ferromagneticorderis fragiledue to the lack of Lieb’s theo- isenoughtotakeintoaccountonlythezero-energysectorto reminthecaseofnanoribbons. analyzephysicsneartheFermienergy,sincethecontribution We investigate ferromagnetic properties by introducing fromtheedgestatesisdominant. Coulomb interactionsinto the zero-energysector5. We have Wecalculatethemagnetizationofananodiskwhenitssize calculated specific heats and susceptibilites at temperature islarge.WestartwiththeHubbardHamiltonian, T in Fig.3. There appear singularities in thermodynamical quantities as N → ∞, which represent a phase transition H = ε(k)c†kσckσ +U c†k+q↑c†k′−q↓ck′↓ck↑. (10) atTc betweentheferromagnetandparamagnetstates, where kσ kk′q X X T = JN/2k . ForfiniteN, therearesteepchangesaround c B Tc, though they are not singularities. It is not a phase tran- Let hn↑i,hn↓i be the average numbers of the up and down sition. However, it would be reasonable to call it a quasi- spins. Themagnetizationisgivenbyhmi = hn↑i−hn↓i. It phasetransitionbetweenthequasiferromagnetandparamag- isdeterminedself-consistentlybytherelation net states. Such a quasi-phase transition is manifest even in finitesystemswithN =100∼1000. hmi= dεD(ε)[f(ε−∆)−f(ε+∆)], (11) Thespecificheattakesnonzero-valueforT >Tc,asshown Z inFig.3(a),whichiszerointhelimitN → ∞. Theresultin- intermsoftheFermidistributionfunction dicates the existence of some correlationsin the paramagnet state. On the other hand, the susceptibility χ always shows f(x)=(exp[(x−µ)/kBT]+1)−1 (12) theCurie-Weisslowχ ∝ 1/T nearT = 0,andexhibitsalso and a behavior showing a quasi-phase transition at T = T , as c showninFig.3(b). Inthefinitesystem,theexpectationvalue U 1 ∆= hmi+ h. (13) ofSz,tot isalwayszerobecausethereisnospontaneoussym- 2NC 2 metrybreakdowninthefinitesystem,andthebehavioristhat Substitutingtheformula(9)intotheStornerequation(11),we ofparamagnet. obtain β∆ 1 π2 V. MAGNETISMOFLARGENANODISKS hmi=Ntanh 2 +cNc ∆2+ β2 3 +4Li2 −e−β∆ , (cid:20) (cid:26) (cid:27)(cid:21) (cid:0) (14(cid:1)) For large N nanodisks, the band gap decreases inversely with the dilogarithmfunction Li2(x). It is difficult to solve proportionaltothesize.Onemaywonderifouranalysisbased thisequationforhmiself-consistentlyatgeneraltemperature only on the zero-energy sector is valid. Indeed, the size of T.Weexaminetwolimits,T →0andT →∞. experimentallyavailablenanodisksisaslargeasN = 100∼ Forthe zerotemperature(T → 0) we obtainthe magneti- 1000. We wish to arguethatour analysisbasedon the zero- zationas energysector isessentially correct, evenif the size N of the U2 cUh nanodiskislargeandthebandgapbecomesverynarrow. hmi=N +c hmi2+ hmi+O(h2). (15) 4N 2 C Near the Fermi energy, the density of states (DOS) D(ε) consists of that of the bulk graphene and an additional peak Because |hmi| ≤ N, itfollowsthathmi = N +O(1). The at the zero-energystates due to the edge states for N ≫ 1, contributionfromthebulkgivesanegligiblecorrectiontothe 4 FIG.5. (a) Anelectrontunnels fromtheleft leadtothenanodisk andthentotherightlead. Thesystemisareminiscenceofametal- FIG. 6. The spin valve is made of two nanodisks with the same ferromagnet-metal junction. (b)Only electronswiththesamespin size, whichareconnected toleads. Applying anexternalmagnetic directionasthenanodiskspincanpassthroughthenanodiskfreely. field, we control the spin direction of the first nanodisk to be |θi As a result, when we apply a spin-unpolarized current to the nan- andthatofthesecondnanodisktobe|↑i. Theincomingcurrentis odisk, theoutgoing current isspinpolarizedtothedirectionof the unpolarized,buttheoutgoingcurrentispolarizedanditsmagnitude nanodiskspin.Consequently,thissystemactsasaspinfilter. canbecontrolledcontinuously. Thisactsasaspinvalve. total magnetization. Hence the magnetization is hmi = N, quasiferromagnethas an intermediate nature: It can be con- and the ground state is fully poralized whenever U 6= 0. trolled by a relatively tiny currentand yet holds the spin di- Ferromagnetism occurs irrespective of the strength of the rection for quite a long time5. Taking advantage of these Coulomb interaction. The magnetization is propotional not propertieswehavealreadyproposedelsewhere11someappli- toN butN. Inthissencethegroundstateofnanodiskisnot cations of graphene nanodisk-lead systems to spintronic de- C bulkferromagnetbutsurfaceferromagnet,whichisconsistent vices. Theyare spinfilter, spinmemory,spinamplifier, spin withthepreviousresult. valve,spin-field-effecttransistor,spindiodeandspinswitch, We nextinvestigatethe high temperatuerlimit (T → ∞). among which here we make a consice review of spin filter, UsingtheTaylorexpansionofthedilogarithmfunction, spin valve and spin switch. We newly propose nanodisk ar- raysandnanomechanicalswitch. π2 β2∆2 β3∆3 Spinfilter: We consideralead-nanodisk-leadsystem[see Li2 −e−β∆ =−12 +β∆log2− 4 + 24 +··· , Fig.1(b)],whereanelectronmakesatunnellingfromtheleft (cid:0) (cid:1) (16) lead to the nanodisk and then to the right lead. This sys- wefind tem is a reminiscenceof a metal-ferromagnet-metaljunction [see Fig.5]. If electrons in the lead has the same spin di- β∆ 4∆ β∆3 hmi=Ntanh +cN log2+ +··· . (17) rection as the nanodisk spin, they can pass through the nan- c 2 β 6 odisk freely. However, those with the opposite direction (cid:20) (cid:21) feelalargeCoulombbarrierandareblocked(Pauliblockade Theleadingtermisthesecondterm,andhencethemaincon- [Fig.5(c)])11. As a result, whenwe applya spin-unpolarized tributioncomesfromthebulk. Thesolutionisonlyhmi = 0 currenttothenanodisk,theoutgoingcurrentisspinpolarized forwhich∆=0. Thereisnomagnetizationathightempera- tothedirectionofthenanodiskspin. Consequently,thissys- ture. temactsasaspinfilter. A comment is in order. We have assumed that the mag- Spin valve: A nanodisk can be used as a spin valve, in- netization axis is fixed and only longitudinal fluctuations of ducing the giant magnetoresistance effect. We set up a sys- themagneticmomentstakeplace. Ingeneral,spin-wave-like temcomposedoftwonanodiskssequentiallyconnectedwith fluctuationsaredominantattheedgesofgraphene18,because leads [see Fig.6]. We apply external magnetic field, and theyaregaplessGoldstonemodes.Onthecontrary,thereexist control the spin direction of the first nanodisk to be |θi = nogaplessGoldstonemodesingraphenenanodisks,because cosθ |↑i + sinθ |↓i, and that of the second nanodisk to be the edge is finite and closed. Furthermore, when the length 2 2 |0i = |↑i. We inject an unpolarized-spincurrentto the first of the edge is very small, spin-wave-like fluctuations have a nanodisk. Thespinoftheleadbetweenthetwonanodisksis largegap.Hence,ourapproximationisvalidfornanodisks. polarizedintothedirectionof|θi. Subsequentlythecurrentis filtered to the up-spinoneby the second nanodisk. The out- goingcurrentfromthesecondnanodiskisIout =Icosθ. We ↑ 2 VI. APPLICATIONFORSPINTRONICDEVICES cancontrolthemagnitudeoftheup-polarizedcurrentfrom0 toI byrotatingtheexternalmagneticfield. Thesystemactas The nanodisk-spinsystem is a quasiferromagnet,which is aspinvalve. an interpolating system between a single spin and a ferro- Spin switch: We consider a chain of nanodisksand leads magnet. It is easy to control a single spin by a tiny current connectedsequentially[seeFig.7].Withoutexternalmagnetic but it does not hold the spin direction for a long time. On field, nanodisk spins are oriented randomly due to thermal the other hand, a ferromagnet is very stable, but it is hard fluctuations,andacurrentcannotgothroughthechain.How- to control the spin direction by a tiny current. A nanodisk ever,whenandonlywhenauniformmagneticfieldisapplied 5 FIG.7. Achainofnonodisksandleadsactsasaspinswitch. With- out external magnetic field, nanodisk spins are oriented randomly due to thermal fluctuations, and a current cannot go through the chain. However, as soon as auniform magnetic field is applied to all nanodisks, the direction of all nanodisk spins become identical andacurrentcangothrough. FIG.9. (a)Illustrationofananomechanical junctionmadeoftwo triangulargraphenecorners.Thereareonandoffstates,switchedby arotationbetweentwocornes. (b)Illustrationofananomechanical rotator made of two corners and a central rhombus rotating rather freely. The conductance is determined by the overlap integral of π-electronsbetweentwocorners,whichisgivenby FIG. 8. (a) Illustration of one-dimensional nanodisk arrays. (b) Bandstructureofone-dimensionalnanodiskarrays.(c)Illustrationof |hp cosθ+p sinθ |p i|=cos2θ. (18) two-dimensionalnanodiskarrays. z y z When the two planes are parallel (θ = 0), the overlaptakes themaximumvalueandπ-electronscangothroughthe con- to all nanodisks, the direction of all nanodisk spins become tact. This is the on state. When the two planesare orthogo- identicalanda currentcangothrough. Thusthesystemacts nal (θ = π/2), the overlaptakes the minimumvalue and π- as a spin switch, showing a giant magnetoresistance effect. electronscannotgothroughthecontact. Thisistheoffstate. Theadvantageofthissystemisthatadetailedcontrolofmag- Theangleischangednanomechanically.Thesystemactsasa neticfieldisnotnecessaryineachnanodisk. nanomechanicalswitch. Itcoulddetecttheangleverysensi- Nanodisk arrays: We investigate nanodiskarrays, which tivelyandbeusefulfordetectnanomechanicaloscillations. are materialswhere nanodisksare connectedin one-or two- Byconnectingtwonanomechanicaljunctions,wecancon- dimentions.Thesestructureshavealreadybeenmanufactured structananomechanicalrotator[Fig.9(b)],wheretwocorners by etching a graphenesheet by Ni nanoparticles6. We show aresuspendedmechanicallywhilethecentralrhombusrotates an example of a trigonal-zigzag-nanodisk array sharing one ratherfreely.Thisstructuremaybeusefultodetectmolecular zigzagedgeasinFig.8(a). We showthecorrespondingband dynamics. When molecules contact the rotator, they are de- structureinFig.8(b). ItisintriguingthatthereareN-foldde- tectedbyrotatingitandchangingthe resistancebetweenthe generateperfectflatbandsinthenanodiskwithsizeN. This twocorners. factisconfirmedbyLeib’stheorem. Eachnanodiskhasspin Peierls instability: We connect two triangular corners N/2 and makes ferromagnetic coupling between two nan- with a zigzag nanoribbon [see Fig.10(a)]. This structure odisks. Inthesame waywecanmaketwo-dimensionalnan- has already been manufactured experimentally6. Polyacety- odiskarrays. Itistobeemphasizedthattheyshowferromag- lene has the Peierls instability: Carbons with conjugate netism, and not quasiferromagnetism, though they are made bondsare spontaneusly deformedinto alternating single and ofnonmagneticmaterials. Theperfectflatbandwillberobust double bonds. We expect the Peierls instability to occur evenwhenelectroninteractionsareintroduced. alsoingraphenenanoribbons[Fig.10(b)],becausegrapahene Nanomechanical switch: We construct a nanomechan- nanoribbonisanaturalextensionofpolyacetylene3. (Wede- ical switch contacting two graphene trigonal corners [see notethewidthofa nanoribbonbyW with W = 0forpoly- Fig.9(a)].Weassumetheanglebetweentwocornersisθ. This acetylene and W = 1 for polyacene.) However, as we now angleis tunedbyan externalmechanicalforce. The carbon- show,thePeierlsinstabilitywillnotoccurinnanoribbonswith skeletonstructureismadeofσ-bonds,andisveryrigidexcept thewidthW >2. Onthecontrary,itispossibletoinducethe forthisrotationaldegreeoffreedom. Peierlstransitionmanuallybystreachingananoribbon.Mak- 6 of the band sturacture for W ≥ 2. A tiny gap ∆ opens at k = π. The logarithmplot of the band gap ∆ as a function of the width W is shown in Fig.10(d). The gap decreases exponentiallyasafunctionofthewidth,∝10−1.7W. Thegap ofthecaseW =1(polyacene)is49meV,andthatofthecase W =2is0.8meV. Wenextcomparetheenergygainfromthisgapwiththeen- ergycostfromtheelasticenergyofalatticedeformation.The ground-state energy difference between distorted and undis- torted structures is very tiny in polyacene20. On the other hand, the elastic energycost is proportionalto the widthW, andhencetheelasticenergycostbecomeslargerthanthegap energygainforwidernanoribbons.ThePeierlsinstabilitywill notoccurspontaneouslyinnanoribbonswithW >2. We have also estimated how the band gap ∆ depends on the externalforce. The transfer integralschange proportion- ally to the external force. For simplicity we have set t1 = (1−0.06λ)t and t2 = (1+0.08λ)t. It takes about10GPa fordeformation0.01tforgraphene,whileittakesabout1GPa fordeformation0.01tfornarrowgraphenenanoribbons21. We FIG. 10. (a) Illustration of a configuration where a single ziazag showthelogarithmplotoftheλdependenceofthebandgaps nanoribbon is connected by two triangular graphene corners. (b) inFig. 10(e). Illustration of the Peierls instability of graphene nanoribbons with W = 1 and W = 3, where W represents the width. Single and Weproposeanapplicationoftheabovesystem. Bystrech- double bonds alternatingly appears. (c) The band structure around ingananoribbonalongtheribbondirection,horizontalbonds k =πofapolyacenewiththePeierlsinstability. (d)Thelogarithm are stretched and vertical bonds are shrinked. The resultant plotofthebandgap∆,log ∆/t,ofnanoribbonswithvariousW. structureisresembletothedeformedstructureinducedbythe 10 (e)Thelogarithmplotofthebandgap∆,log ∆/t,ofnanoribbons Peierlstransition.WemaycallitastraininducedPeierlstran- 10 asafunctionoftheappliedforceδforvariousW. sition.Whenwestretchthisstructure,thebandgapopensand theconductanceatthezeroenergybecomeszerobythestrain inducedPeierls-transition. Ontheotherhand,withouttheex- inganadvantageofthisproperty,weproposeananomechan- ternalmechanicalforce,nanoribbonswithW > 2isgapless icalswitchsensor. andthesystemisconductive.Wecanswitchtheconductance The model Hamiltonian is the Su-Schrieffer-Heeger-like fromontooffbystretchingthesystem. Thesystemactsasa model19, nanomechanicalswitch sensor detecting nanoscale displace- ment. H0 = tijc†i,σcj,σ. (19) hXi,ji VII. CONCLUSIONS In this model, when the Peierls instability occurs, the trans- fer integraltakes two values correspondingto the single and A nanodiskcan be used as a spin filter just as in a metal- doublebonds,andotherwiseittakesonevaluecorresponding ferromagnet-metaljunction. Anovelfeatureisthatthedirec- to the conjugatebond. We are able to calculatethe gapana- tionofthespincanbecontrolledbyexternalfieldorspincur- lytically in the case of polyacene (W = 1), where the band rent. We havenewlyproposednanodiskarraysandnanome- structurearoundk=πisgivenby chanicalswitch. These nanodisk-nanoribboncomplexstruc- turewillopenanewfieldofnanoelectronics,spintronicsand 1 ε(kx)=±2 −t2+ 4t21+5t22+8t1t2coskx . (20) nanoelectromechanicspurelybasedongraphene. (cid:18) q (cid:19) Thebandgapisdeterminedbysubstitutingk =πas Acknowledgements x I am very grateful to Y. Takada, H. Tsunetsugu, B.K. ∆=2ε(π)= −t2+ 4t21+5t22−8t1t2 ∼4δt1δt2. Nikolic and N. Nagaosa for fruitefuldiscussions. Thiswork (cid:18) q (cid:19) (21) wassupportedinpartbyGrants-in-AidforScientificResearch We show ε(kx) in Fig.10(c) by taking the values t1 = t − fromthe Ministryof Education,Science, SportsandCulture δt1 = 0.94t for single bondsand t2 = t+δt2 = 1.08t for No. 22740196and21244053. double bonds. We have carried out a numerical estimation References 7 1 K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang, 10 M. Ezawa, Phys. Rev. B 77, 155411 (2008); Phys. Rev. B 79, S.V. Dubonos, I. V.Grigorieva, and A. A.Firsov, Science 306, 241407(R)(2009). 666 (2004). K. S. Novoselov, A. K. Geim, S. V. Morozov, D. 11 M.Ezawa,Eur.Phys.J.B67,543(2009). Jiang1,M.I.Katsnelson,I.V.Grigorieva,S.V.DubonosandA. 12 M.Ezawa,Phys.Rev.B81,201402(R)(2010) A.Firsov.,Nature438,197(2005).Y.Zhang,Y.-W.Tan,HorstL. 13 W.L.Wang,OlegV.Yazyev,S.Meng,andE.Kaxiras,Phys.Rev. StormerandPhilipKim,Nature438,201(2005). Lett.102,157201(2009). 2 M.Fujita,K.Wakabayashi,K.Nakada,andK.Kusakabe,J.Phys. 14 J. Akola, H. P. Heiskanen, and M. Manninen, Phys. Rev. B 77, Soc.Jpn.65,1920(1996). 193410(2008). 3 M.Ezawa,Phys.Rev.B,73,045432(2006). 15 O.V.Yazyev,Rep.Prog.Phys73,5(2010). 4 L.Brey,andH.A.Fertig,Phys.Rev.B,73,235411(2006). 16 A.D.Gu¨c¸lu¨,P.Potasz,O.Voznyy,M.Korkusinski,andP.Hawry- 5 M.Ezawa,Phys.Rev.B76,245415(2007): M.Ezawa,Physica lak,Phys.Rev.Lett.103,246805(2009). E 40, 1421-1423 (2008): M. Ezawa, New J. Phys. 11, 095005 17 P.Potasz,A.D.Gu¨c¸lu¨ andP.Hawrylak,Phys.Rev.B81,033403 (2009). (2010). 6 L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. 18 O.V.YazyevandM.I.Katsnelson,Phys.Rev.Lett.100,047209 KongandP.Jarillo-Herrero,NanoLett.,9,2600(2009). (2008). 7 J. Ferna´ndez-Rossier, and J. J. Palacios, Phys. Rev. Lett. 99, 19 W.P.Su,J.R.SchriefferandA.J.Heeger,Phys.Rev.B22,2099 177204(2007). (1980). 8 O.Hod,V.Barone,andG.E.Scuseria,Phys.Rev.B77,035411 20 L.SalemandH.C.Longuet-Higgins,Proc.R.Soc.London,Ser. (2008). A255,435(1960). 9 W.L.Wang,S.MengandE.Kaxiras,NanoLetters8,241(2008). 21 H.Zhao,K.Min,andN.R.Aluru,Nano.Lett.9,3012(2009).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.