GOR ■ Publications Managing Editor Kolisch,Rainer Editors Burkard,Rainer E. Fleischmann,Bernhard Inderfurth,Karl Möhring,RolfH. Voß,Stefan For further volumes: http://www.springer.com/series/5257 Peter Brucker • Sigrid Knust Complex Scheduling Second Edition Prof. Dr. Peter Brucker Prof. Dr. Sigrid Knust Universität Osnabr ück Fachbereich Mathematik/Informatik Albrechtstraeß 28 49069 Osnabrück Germany [email protected] [email protected] ISBN978-3-642-23928-1 e-ISBN978-3-642-23929-8 DOI10.1007/978-3-642-23929-8 SpringerHeidelbergDordrechtLondonNewYork LibraryofCongressControlNumber:2011939194 © Springer-VerlagBerlinHeidelberg2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface of the Second Edition In this revised edition some errors were corrected, some parts were explained in moredetail,andnewmaterialhasbeenadded. Inparticular,furthergeneraliza- tionsoftheRCPSP,additionalpracticalapplicationsandsomemorealgorithms were integrated. Since in recent years commercial and non-commercial solvers for mixed inte- ger linear programs or satisfiability problems became much more efficient, they may be a good alternative for calculating exact (or heuristic) solutions. Hence, we provided new sections on MIP formulations and a SAT formulation for the RCPSP. Furthermore, a description of ant colony optimization was added to the section on heuristic methods for solving the RCPSP. The section on lower bounds was augmented by bounds based on Lagrangian relaxation. In con- nection with the new methods for solving the RCPSP, basic concepts for SAT solvers, Lagrangianrelaxation, and ant colony optimization have been added to Chapter 2. We also wrote a new basic section on constraint programming. SinceinthefirsteditioninthesectiononconstraintpropagationfortheRCPSP the input-or-output test was incorrect, we corrected it in this edition. A list of errata according to the book can be found at the website http://www.informatik.uni-osnabrueck.de/knust/complex/ Osnabru¨ck, August 2011 Peter Brucker, Sigrid Knust v Preface Scheduling problems have been investigated since the late fifties. Two types of applications have mainly motivated research in this area: project planning and machine scheduling. While in machine scheduling a large number of specific scheduling situations depending on the machine environment and the job cha- racteristicshavebeenconsidered,theearlyworkinprojectplanninginvestigated scheduling situations with precedence constraints between activities assuming that sufficient resources are available to perform the activities. More recently, in project scheduling scarce resources have been taken into account leading to so-called resource-constrained project scheduling problems. On the other hand, also in machine scheduling more general and complex problems have been in- vestigated. Due to these developments today both areas are much closer to each other. Furthermore, applications like timetabling, rostering or industrial scheduling are connected to both areas. This book deals with such complex scheduling problems and methods to solve them. It consists of three parts: The first part (Chapters 1 and 2) contains a description of basic scheduling models with applications and an introduction intodiscrete optimization(covering complexity, shortest pathalgorithms, linear programming, network flow algorithms and general optimization methods). In the second part (Chapter 3) resource-constrained project scheduling problems are considered. Especially, methods like constraint propagation, branch-and- bound algorithms and heuristic procedures are described. Furthermore, lower bounds and general objective functions are discussed. In the last part (Chapter 4) generalizations of the job-shop problem are covered leading to applications like job-shop problems with flexible machines, transport robots or with limited buffers. Heuristic methods to solve such complex scheduling problems are pre- sented. We are indebted to many people who have helped in preparing this book. Stu- dents in our courses during the last two years at the University of Osnabru¨ck have given suggestions for improving earlier versions of this material. Andreas DrexlandSilviaHeitmannreadcarefullypartsofthebookandgaveconstructive comments. We are grateful to the Deutsche Forschungsgemeinschaft for supporting the re- search that underlies much of this book. In addition we like to acknowledge the advice and support of Philippe Baptiste, Rainer Kolisch, Rolf H. M¨ohring, Klaus Neumann and Erwin Pesch. Osnabru¨ck, Oktober 2005 Peter Brucker, Sigrid Knust Contents Preface v 1 Scheduling Models 1 1.1 The RCPSP and some Generalizations . . . . . . . . . . . . . . 1 1.2 Machine Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2.1 Single-machine scheduling . . . . . . . . . . . . . . . . . 14 1.2.2 Parallel machine scheduling . . . . . . . . . . . . . . . . 14 1.2.3 Shop scheduling . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.4 Multi-processor task scheduling . . . . . . . . . . . . . . 17 1.3 Applications of the RCPSP . . . . . . . . . . . . . . . . . . . . 18 1.4 Reference Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 Algorithms and Complexity 29 2.1 Easy and Hard Problems . . . . . . . . . . . . . . . . . . . . . . 29 2.1.1 Polynomially solvable problems . . . . . . . . . . . . . . 30 2.1.2 NP-hard problems . . . . . . . . . . . . . . . . . . . . . 30 2.2 Shortest Path Algorithms . . . . . . . . . . . . . . . . . . . . . 35 2.2.1 Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . . 35 2.2.2 Label-correcting algorithms . . . . . . . . . . . . . . . . 39 2.2.3 Detection of negative cycles . . . . . . . . . . . . . . . . 42 2.2.4 Floyd-Warshall algorithm . . . . . . . . . . . . . . . . . 42 2.3 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . 44 2.3.1 Linear programs and the simplex algorithm . . . . . . . 44 2.3.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3 The revised simplex method . . . . . . . . . . . . . . . . 56 2.3.4 Delayed column generation techniques . . . . . . . . . . 58 2.4 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . 62 vii viii Contents 2.5 Network Flow Algorithms . . . . . . . . . . . . . . . . . . . . . 65 2.5.1 The minimum cost flow problem . . . . . . . . . . . . . . 65 2.5.2 The residual network and decomposition of flows . . . . 67 2.5.3 The maximum flow problem . . . . . . . . . . . . . . . . 72 2.5.4 Flows and cuts . . . . . . . . . . . . . . . . . . . . . . . 73 2.5.5 Algorithms for the maximum flow problem . . . . . . . . 76 2.5.6 Algorithms for the minimum cost flow problem . . . . . 80 2.6 Branch-and-Bound Algorithms . . . . . . . . . . . . . . . . . . . 82 2.6.1 Basic concepts. . . . . . . . . . . . . . . . . . . . . . . . 82 2.6.2 The knapsack problem . . . . . . . . . . . . . . . . . . . 84 2.6.3 Integer linear programs . . . . . . . . . . . . . . . . . . . 88 2.7 Constraint Programming . . . . . . . . . . . . . . . . . . . . . . 91 2.8 The Satisfiability Problem (SAT) . . . . . . . . . . . . . . . . . 97 2.9 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . 100 2.10 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . 103 2.10.1 Local search algorithms . . . . . . . . . . . . . . . . . . 103 2.10.2 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . 110 2.10.3 Ant colony optimization . . . . . . . . . . . . . . . . . . 113 2.11 Reference Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 3 Resource-Constrained Project Scheduling 117 3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.1.1 Temporal analysis . . . . . . . . . . . . . . . . . . . . . . 117 3.1.2 A classification of schedules . . . . . . . . . . . . . . . . 119 3.1.3 Reference notes . . . . . . . . . . . . . . . . . . . . . . . 121 3.2 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.2.1 Schedule generation schemes . . . . . . . . . . . . . . . . 122 3.2.2 Priority-based heuristics . . . . . . . . . . . . . . . . . . 128 3.2.3 Local search algorithms . . . . . . . . . . . . . . . . . . 130 3.2.4 Genetic algorithms . . . . . . . . . . . . . . . . . . . . . 132 3.2.5 Ant colony optimization . . . . . . . . . . . . . . . . . . 136 3.2.6 Heuristics for the multi-mode case . . . . . . . . . . . . . 137 3.2.7 Reference notes . . . . . . . . . . . . . . . . . . . . . . . 137 3.3 MIP Formulations of the RCPSP . . . . . . . . . . . . . . . . . 138 Contents ix 3.3.1 Discrete time formulations . . . . . . . . . . . . . . . . . 138 3.3.2 Continuous time formulations . . . . . . . . . . . . . . . 140 3.3.3 Event-based formulations. . . . . . . . . . . . . . . . . . 142 3.3.4 Project scheduling with labor constraints . . . . . . . . . 148 3.3.5 Reference notes . . . . . . . . . . . . . . . . . . . . . . . 150 3.4 A SAT Formulation of the RCPSP . . . . . . . . . . . . . . . . 150 3.5 General Objective Functions . . . . . . . . . . . . . . . . . . . . 151 3.5.1 Regular functions . . . . . . . . . . . . . . . . . . . . . . 152 3.5.2 Linear functions . . . . . . . . . . . . . . . . . . . . . . . 152 3.5.3 Convex piecewise linear functions . . . . . . . . . . . . . 154 3.5.4 General sum functions . . . . . . . . . . . . . . . . . . . 157 3.5.5 Reference notes . . . . . . . . . . . . . . . . . . . . . . . 161 3.6 Constraint Propagation . . . . . . . . . . . . . . . . . . . . . . . 162 3.6.1 Basic relations. . . . . . . . . . . . . . . . . . . . . . . . 162 3.6.2 Start-start distance matrix . . . . . . . . . . . . . . . . . 163 3.6.3 Symmetric triples and extensions . . . . . . . . . . . . . 165 3.6.4 Disjunctive sets . . . . . . . . . . . . . . . . . . . . . . . 168 3.6.5 Cumulative resources . . . . . . . . . . . . . . . . . . . . 186 3.6.6 Constraint propagation for the multi-mode case . . . . . 186 3.6.7 Reference notes . . . . . . . . . . . . . . . . . . . . . . . 192 3.7 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 3.7.1 Combinatorial constructive lower bounds . . . . . . . . . 194 3.7.2 Lower bounds based on Lagrangian relaxation . . . . . . 196 3.7.3 An LP-based constructive lower bound . . . . . . . . . . 197 3.7.4 An LP-based destructive method . . . . . . . . . . . . . 203 3.7.5 A destructive method for the multi-mode case . . . . . . 211 3.7.6 Reference notes . . . . . . . . . . . . . . . . . . . . . . . 216 3.8 Branch-and-Bound Algorithms . . . . . . . . . . . . . . . . . . . 217 3.8.1 An algorithm based on precedence trees . . . . . . . . . 217 3.8.2 An algorithm based on extension alternatives . . . . . . 221 3.8.3 An algorithm based on delaying alternatives . . . . . . . 225 3.8.4 An algorithm based on schedule schemes . . . . . . . . . 231 3.8.5 Algorithms for the multi-mode case . . . . . . . . . . . . 237 3.8.6 Reference notes . . . . . . . . . . . . . . . . . . . . . . . 238