ebook img

Complex organic molecules in organic-poor massive young stellar objects PDF

1.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex organic molecules in organic-poor massive young stellar objects

Astronomy&Astrophysicsmanuscriptno. ms_icegas_1col (cid:13)cESO2015 January15,2015 Complex organic molecules in organic-poor massive young stellar objects. EdithC.Fayolle1,2,KarinI.Öberg2,RobinT.Garrod3,EwineF.vanDishoeck1, andSuzanneE.Bisschop4,5 5 1 1 LeidenObservatory,LeidenUniversity,P.O.Box9513,2300RALeiden,TheNether- 0 2 lands n e-mail:[email protected] a J 2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 3 02138,USA 1 3 Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853- ] R 6801,USA S 4 TheCentreforStarandPlanetFormation,NaturalHistoryMuseumofDenmark,Uni- . h versityofCopenhagen,ØsterVoldgade5-7,CopenhagenK.,DenmarkDK-1350 p - 5 TheCentreforStarandPlanetFormation,NielsBohrInstitute,JulianeMariesvej30, o r CopenhagenØ.,Denmark,DK-2100 t s a [ 1 ABSTRACT v 8 Context. Massive young stellar objects (MYSOs) with hot cores are classic sources of 6 1 complexorganicmolecules.Theoriginsofthesemoleculesinsuchsources,aswellasthe 3 0 small- and large-scale differentiation between nitrogen- and oxygen-bearing complex . 1 species,arepoorlyunderstood. 0 5 Aims. Weaimtousecomplexmoleculeabundancestowardachemicallylessexplored 1 class of MYSOs with weak hot organic emission lines to constrain the impact of hot : v molecularcoresandinitialiceconditionsonthechemicalcompositiontowardMYSOs. i X Methods. WeusetheIRAM30mandtheSubmillimeterArraytosearchforcomplexor- r a ganicmoleculesover8-16GHzinthe1mmatmosphericwindowtowardthreeMYSOs withknowniceabundances,butwithoutluminousmolecularhotcores. Results. Complexmoleculesaredetectedtowardallthreesourcesatcomparableabun- danceswithrespecttoCH OHtoclassicalhotcoresources. Therelativeimportanceof 3 CH CHO,CH CCH,CH OCH ,CH CN,andHNCOdifferbetweentheorganic-poor 3 3 3 3 3 MYSOs and hot cores, however. Furthermore, the N-bearing molecules are generally concentrated toward the source centers, while most O- and C-bearing molecules are presentbothinthecenterandinthecolderenvelope.Gas-phaseHNCO/CH OHratios 3 Articlenumber,page1of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics aretentativelycorrelatedwiththeratiosofNH iceoverCH OHiceinthesamelines 3 3 ofsight,whichisconsistentwithnewgas-grainmodelpredictions. Conclusions. Hotcoresarenotrequiredtoformcomplexorganicmolecules,andsource temperature and initial ice composition both seem to affect complex organic distribu- tionstowardMYSOs. Toquantifytherelativeimpactoftemperatureandinitialcondi- tionsrequires,however,alargerspatiallyresolvedsurveyofMYSOswithicedetections. Key words. Astrochemistry,ISM:molecules,ISM:abundances 1. Introduction Organicmoleculescontainingmorethansixatoms,theso-calledcomplexorganics(Herbst &vanDishoeck2009),arecommonlyfoundinthewarmanddensegas(T ą100K,ną 106 cm´3 )aroundyoungstellarobjects(YSOs),so-calledmolecularhotcores(e.g.,Blake et al. 1987; Cazaux et al. 2003; Fuente et al. 2005). Abundances and abundance ratios of complexorganicsarefoundtovarysubstantiallybetween(Helmich&vanDishoeck1997) andwithinYSOs(e.g.,Wyrowskietal.1999). Thissuggeststhatformationanddestruc- tion routes are highly environment specific and that there is a sensitive dependence of the complex organic chemistry on chemical and physical initial conditions. In addition, different filling factors of the warm gas should play a role if there the complex organic productsofcoldandhotchemistrydifferthere. The potential environmental dependencies and chemical memories lead to complex organicshavingagreatpotentialasprobesofthecurrentandpastphysicalandchemical conditionswheretheyarefound(Nomura&Millar2004).Theirpotentialutilityisfurther increasedbythefactthatmostcomplexorganicmoleculespresentlargenumbersoflines, spanningmostexcitationconditionsfoundinspace. Complexmoleculesarealsoofhigh interest for origins of life theories since they are the precursors of even more complex prebioticmaterial(Ehrenfreund&Charnley2000). Usingmoleculesasprobesofphysical conditionsandadvancementsinprebioticevolutionfromorganicsbothrelyonadetailed understandingofcomplexorganicchemistry.Theformationanddestructionmechanisms andratesofmostcomplexorganicsare,however,poorlyconstrained. TheformationoforganicmoleculesaroundmassiveYSOs(MYSOs)wasfirstthought to proceed through gas phase reactions in dense hot cores, following evaporation of ice grain mantles (e.g., Charnley et al. 1992). Recent laboratory experiments and modeling efforts point now toward a more complicated sequential scenario that relies to a greater extent on surface formation routes on submicron-sized dust particles. Herbst & van Dishoeck(2009)classifycomplexorganicmoleculesintermsofgenerationsaccordingto thefollowingscenario. Ininterstellarcloudsandinthedeeplyembeddedearlyphasesof starformation,atomsandmoleculesaccreteorformonthesurfaceofdustgrains,building Articlenumber,page2of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics upanicymantleofsimplespecieslikeH O,CH ,andNH (Tielens&Hagen1982). This 2 4 3 icymantleisprocessedatlowtemperaturebyatoms, whichcandiffuseevenatthelow temperaturesincloudcores,creatingthezerothgenerationoforganicmolecules. Agood example of these species is CH OH, which is efficiently formed at low temperature by 3 thehydrogenationofCOice(Watanabe&Kouchi2002;Watanabeetal.2003,2004;Fuchs etal.2009;Cuppenetal.2009). First-generationcomplexorganicsformwhenheatingthe coldenvelopeupbytheincreasingluminosityofacentralYSOandisduetoacombina- tion of photoprocessing of the ice resulting in radical production and a warming up (20 to 100 K) of the grains, thereby enhancing the mobility of radicals and molecules (Gar- rod et al. 2008; Öberg et al. 2010). When the icy grains move inward and reach a region warmer than 100 K, the icy mantle evaporates, bringing the zeroth- and first-generation organicsintothegasphase,whereadditionalchemicalreactionsgiverisetotheformation ofthesecond-generationcomplexorganics(e.g.,Charnleyetal.1992;Dotyetal.2002;Viti etal.2004). In the proposed scenario of complex molecule formation, the initial ice mantle plays a critical role. The exact composition of this ice may therefore have a strong effect both ontheproductcompositionofformedorganicsandontheiroverallformationefficiency. Garrod et al. (2008) and Öberg et al. (2009) find, for example, that CH OH ice is a key 3 startingpointformostcomplexorganicformation. Rodgers&Charnley(2001)usedahot corechemistrymodeltoshowthattherelativeamountofNH intheicehasalargeimpact 3 ontheCH CN/CH OHprotostellarabundanceratio. Observationallytestingtheserela- 3 3 tionshipswouldprovidekeyconstraintsontheformationpathwaysofcomplexorganic molecules. IsolatedMYSOswithwarminnerenvelopesaregoodlaboratoriesfortestingthishy- pothesis as these sources are bright enough to observe a wide variety of organics and some of them present ice features from the cold outer protostellar envelope (Gibb et al. 2004). Sources presenting both complex gas and ice features are, however, rare as the sources need to be evolved to possibly display a bright hot core chemistry accessible to currentobservationalfacilitiesandyoungenoughsuchthattheicematerialhasnotbeen completely consumed by accretion, warm up, and envelope dispersal. In the massive YSOsamplestudiedbyBisschopetal.(2007),onlythreehotcorespresenticespectra(see Table 1). Such a small number prevents any analysis of the correlation between ice and gascontentandjustifiesoursearchforotherobjectsthatdisplaybothicefeaturesandgas phaseorganics. Toextendthesampleofsourceswithbothcomplexorganicsandiceobservations,we lookforgasphaseorganicsspeciesaroundnon-hotcoreMYSOs(absenceorlow-levelof hotCH OHemission)thatalsohaveiceobservationsavailablefromtheliterature. These 3 sourcesarecalledfromnowonorganic-poorMYSOs(poorinlinesoforganicmolecules). Articlenumber,page3of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics Complex molecule observations in such objects may additionally shed light on the con- ditionsunderwhichdifferentkindsofcomplexmoleculescanform,i.e. whichmolecules requirethepresenceofahotcoretobeabundant. Massive objects NGC7538 IRS9, W3 IRS5 , and AFGL490 have been observed in the mid-infraredbytheInfraredSpaceObservatory(ISO)andanalyzedsystematicallyforice abundancesbyGibbetal.(2004)andreferencestherin. NGC7538IRS9isa6ˆ104Ld lu- minousobjectlocatedinPerseus.ItisclosetohotcoresourceNGC7538IRS1anddisplays atleastthreebipolaroutflows,evidenceforaccretion(Sandelletal.2005),andahotcom- ponentclosetothecentralobject. W3IRS5isassociatedwithfiveYSOs,twoofwhichare massive (van der Tak et al. 2005; Megeath et al. 2005; Rodón et al. 2008; Chavarría et al. 2010). It has a luminosity of 17ˆ104Ld and presents strong S-bearing molecular lines (Helmich et al. 1994). AFGL490 is a very young medium-mass YSO of 4.6ˆ103Ld, in transitiontoaHerbigBestar, whichdrivesahigh-velocityoutflow(Mitchelletal.1995) andshowsevidenceofarotatingdisk(Schreyeretal.2006). Sincethesesourcesarecon- sideredtopotentallybeatanearlierevolutionarystagethantypicalhot-coresources,itis difficulttopredictthechemicalcomplexityandthespatialemissionoftheorganicsthat couldbeobservedinthesesources. In this study we use a combination of single-dish IRAM 30m data and spatially re- solvedobservationsfromtheSubmillimeterArray1(SMA)tosearchfororganicmolecules around these three MYSOs and report on their complex organic abundances in the cool protostellar envelope and in a warmer region closer to the star. A subset of these data wasusedintheÖbergetal.(2013)tostudythedetailedradialdistributionofmolecules inNGC7538IRS9,whilethepresentstudyfocusesontheoveralldetectionrateoforgan- ics in these organic-poor sources, and on how they compare with ice abundances and traditional hot core chemistry. The paper is organized as follows. The observations are described in Section 2, and the results of the line analysis are shown in Sections 3.1, 3.2, and3.3. Thechemistryinoursampleiscomparedtothechemistryintraditionalhot-core sourcesinSection3.4.Section3.5presentscorrelationstudiesbetweeniceandgascolumn densities and abundances, testing the impact of initial ice compositions on the complex chemistry. A discussion of the use of these line-poor sources to underpin the origins of complexchemistryispresentedinSection4,whichisfollowedbytheconclusionsofthis study. Articlenumber,page4of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics Table1:Sourcecharacteristicsandiceabundances. Thesourcesobservedinthisstudyare inboldface,theothersarefromBisschopetal.(2007). Source α(2000) δ(2000) d L N X[%](/N ) H2O H2O kpc 104Ld 1017cm´2 CH3OH CH4 NH3 OCN´ NGC7538IRS9 23:14:01.6 +61:27:20.4 2.7 3.5 70 4.3˘0.6 2˘0.4 15˘2.7 1.7˘0.5 W3IRS5 02:25:40.5 +62:05:51.3 2.0 17 51 ă3.3 ă1.3 ă5.7 ă0.23 AFGL490 03:27:38.7 +58:47:01.1 1.4 0.46 6.2 11˘4 ă2.4 ă16 ă1.2 W33A 18:14:38.9 -17:52:04.0 3.8 5.3 110 15˘5 1.5˘0.2 15˘4 6.3˘1.9 AFGL2591 20:29:24.6 +40:11:19.0 3.3 18 12 14˘2 ă2.7 ă2.3 – NGC7538IRS1 23:13:45.4 +61:28:12.0 2.4 15 22 ă4 1.5˘0.5 ă17 ă0.5 OrionIRc2 05:35:14.3 -05:22:31.6 0.4 1.0 24.5 10˘3 – – 2˘0.6 G24.78 18:36:12.6 -07:12:11.0 7.7 1.2 – – – – – G75.78 20:21:44.1 +37:26:40.0 1.9 19 – – – – – NGC6334IRS1 17:20:53.0 -35:47:02.0 1.7 11 – – – – – 2. Observations and analysis 2.1. Observations TheMYSOsNGC7538IRS9, W3IRS5, andAFGL490locatedinPerseusNGC7538at2.7 kpc,inPerseusW3at2.0kpc,andinCamelopardalisOB1at1.4kpcrespectively(seeTable 1) were observed with the IRAM 30m and the Submillimeter Array. The three sources were observed with the IRAM 30m telescope on February 19–20, 2012 using the EMIR 230GHzreceiverandthenewFTSbackend. AtthesefrequenciestheIRAM30mbeamis „102. Thetwosidebandscover223–231GHzand239–247GHzataspectralresolutionof „0.2kms´1 andwithasidebandrejectionof-15dB(Carter, M.etal.2012). Wechecked thepointingeveryonetotwohoursandfoundtobeaccuratewithin22to32. Focus was checked every four hours and generally remained stable through most of the observations; i.e., corrections in the range of 0.2–0.4 were common, but a correction of 0.7 was required once. We acquired spectra in both position-switching and wobbler- switchingmodes. Theresultingspectrahadsimilarrelativelineintensities,indicativeof noemissioninthewobbler-offposition. Thewobbler-switchingmodewasconsiderably more stable, and we used these data alone for the quantitative analysis. The weather during the observations was excellent and the τ varied between 0.05 and 0.15. 225GHz We converted the raw IRAM spectra to main beam temperatures and fluxes using for- ward and beam efficiencies and antenna temperature to flux conversion values listed at www.iram.es/IRAMES/mainWiki/Iram30mEfficiencies. The spectra were reduced us- ingCLASS2.Alinearbaselinewasfittedtoeach4GHzspectralchunkusingfourtoseven windows. The individual scans were baseline-subtracted and averaged3. The absolute flux scale of the lines were then set using calibrated SMA data as outlined in detail by Öbergetal.(2013). 1 TheSubmillimeterArrayisajointprojectbetweentheSmithsonianAstrophysicalObservatory andtheAcademiaSinicaInstitueofAstronomyandAstrophysics. ItisfundedbytheSmithsonian InstituteandtheAcademiaSinica. 2 CLASSwebsite:http://www.iram.fr/IRAMFR/GILDAS 3 Reduceddataareavailablethroughthedataversenetworkathttp://dx.doi.org/10.7910/DVN/ 26562 Articlenumber,page5of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics Fig.1: ImageoftheCH CNemissionusingthe13 -12 at239.138GHzlineacquiredby 3 0 0 theSMAforthemassiveyoungstellarobjectsNGC7538IRS9,W3IRS5,andAFGL490tar- getedinthisstudy.Theblackcontourpresentsthe50%lineintensity,andthesynthesized beamisshowninwhiteatthebottomleft. A2”radiusmaskusedtoextractthespectrais overplottedindashedredline. ImagesforthehotcoresourceNGC7538IRS1ispresented aswell. Thelattersourcehasbeenthroughthesameprogramasthethreeothersources. SMA observations were acquired in the compact and extended array configurations. Thedatainthecompactconfigurationweretakenon15October2011forallsourcesand with seven antennas, resulting in baselines between 16 m and 77 m. The data in the extended configuration were obtained using eight antennas, resulting in 44 m to 226 m baselinesandwereacquiredon29July2011forW3IRS5andAFGL490andonthe15th ofAugust2011forNGC7538IRS9. Weset-uptheSMAcorrelatortoobtainaspectralres- olutionof„1kms´1 using128channelsforeachofthe46chunkscovering227-231GHz inthelowersidebandand239–243GHzintheuppersideband. Theτ was0.09on 225GHz 29July,0.1on15August,and0.07on15October20114. We used the MIR package5 to perform the first data reduction steps (flux calibration and continuum subtraction). Absolute flux calibration is done with Callisto. The band- pass calibrators 1924-292 and 3c84 were used for the compact observations, and 3c454.3 and 3c279 were used to calibrate 29 July and 15 July observations, respectively. The quasars 0014+612 and 0102+584 were used as gain calibrators for NGC7538 IRS9, and 0244+624, 0359+509, and we used 0102+584 for W3 IRS5 and AFGL490. The compact andextendeddatawerecombinedforeachsourcewithMIRIAD5usingnaturalorrobust weighting, depending on the data quality, which resulted in synthesized beam sizes of 2.0”ˆ1.7”forNGC7538IRS9,2.2”ˆ2.8”forW3IRS5,and2.3”ˆ2.9”forAFGL490. 2.2. Spectral extraction and rms Both the IRAM and SMA data were frequency-calibrated using the bright 5-4 CH OH 3 ladderaround241.7GHz,correctingfortheintrinsicvelocityofthedifferentsources. We extractedtheSMAspectrausinga22-radiusmaskaroundthecontinuumphasecenterof eachsource.ThemaskdimensionwaschosentoencompassamajorityoftheCH CNline 3 4 Observations are available on the SMA archive website herhttp://www.cfa.harvard.edu/cgi- bin/sma/smaarch.pl 5 MIRwebsite:http://www.cfa.harvard.edu/~cqi/mircook.html Articlenumber,page6of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics emissionat239.318GHzthatcanbeassociatedwithacorecomponent,asshowninFigure 1. Weselecteda22 masksizebasedonacombinationoftheoryanddatainspection, i.e. theoptimalmasksizeshouldincludeallthehotemissionandexcludeasmuchaspossible ofthecoldenvelopeemission. Inallsources,theselectedmasksizeshouldbebiggerthan the 100 K radius and thus incorporate all emission associated with a potential hot core. TowardNGC7538IRS9andAFGL490,wherethe100Kradiusshouldbesmallerthan22 ,smallermaskswerealsoexploredtomoreexclusivelytracetheT ą100Kregion,butthe resultingspectrahadgenerallytoolowsignal-to-noiseratiotobeusefulforaquantitative analysis. SomecolderchemistrycontributiontotheSMAspectrainthesesourcescannot, thus,beexcludedapriori,butthesucceedinganalysis(seebelow)demonstratedthatthe emissionisindeeddominatedbyhotgas. The rms for the IRAM and SMA observations of each source was derived in a line free region of several hundred channels: the 229.37-229.445 GHz region for the lower side band and the 240.7 - 240.75 GHz region for the upper side band. The rms derived for the IRAM observations is between 15 and 20 mK, which is lower than any previous millimeter observations for these sources. For the SMA data, the rms for the lower side bandis„70mK,and„100mKfortheuppersideband. 3. Results 3.1. Line identification and characterization Figure2showstheIRAM30m239-243GHzspectraforthethreetargetedline-poorMYSOs and the hot-core source NGC7538 IRS1. The organic-poor MYSOs have, as expected, a lower line density, but also many line coincidences with the hot core. Of the lines from complexorganicslistedbyBisschopetal.(2007)foundintheirsamplehot-coresources, CH OH,CH CN,CH CCH,HNCO,CH OCH ,andCH CHOlineswereidentifiedinat 3 3 3 3 3 3 leastoneoftheorganic-poorMYSOsusingthesplataloguecatalogtool6 andtheCDMS7 andtheJPL8 spectraldatabases(Mülleretal.2001;Pickettetal.1998). Allavailablelines intheobservedspectralrangewereusedforthequantitativeanalysisexceptforCH OH 3 whereweonlyusedthelinesfromthe5-4laddertosimplifytheexcitationanalysis. WefittedtheidentifiedlineswithaGaussianfunctioninIDLusingtheroutine’gauss- fit’ for isolated lines and ’mpfitfun’ when a multiple Gaussian fit was required because of overlapping lines. A local baseline component was added to the fits when needed, andthepresenteduncertaintieswereoutputbythefittingroutines. Wecalculated3σup- perlimitsusinganaverageFWHMforthedifferentsources. Unresolvedmultipletswere treatedinoneoutthreewaysdependingonthenatureoftheoverlappinglines: 1)Ifone 6 Splataloguewebsite:http://www.cv.nrao.edu/php/splat/ 7 CDMSwebsite:http://www.astro.uni-koeln.de/cdms 8 JPLdatabasewebsite:http://spec.jpl.nasa.gov/ Articlenumber,page7of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics Fig. 2: 239-243 GHz spectral window from the IRAM 30m displaying emission lines for typical hot core source NGC 7538 IRS 1and weak line MYSOs NGC7538 IRS9, W3IRS5, AFGL490.Thestar-markedlinesareCOghostlinesconsistentwiththesidebandrejection foreachsource. of the possible contributing lines had a very low Einstein coefficient or high upper en- ergyleveland/orisnotlikelytobedetectedbasedonnon-detectionsofthesamespecies in other frequency ranges, then it was assumed to not contribute significantly and was not included in the fit. 2) If the lines came from the same species and the upper energy level and Einstein coefficients were identical or close to identical, then the degeneracies were added and the feature was treated as a single line, 3) if none of the two previous conditionsweremet,wedidnotincludethemultipletintheanalysis. Line upper energy levels, Einstein coefficients, degeneracies, and quantum numbers from the Splatalogue are listed with the derived line fluxes and FWHM in Table 2 for CH OHfromthesingle-dishobservations,inTable3forCH OHfromtheSMAspectra, 3 3 in Table 4 for CH CN from IRAM, in Table 5 for CH CN from the SMA, in Table 6 for 3 3 CH CCHfromIRAM,inTable7forCH CCHfromtheSMA,andinTable8forHNCO, 3 3 CH OCH , and CH CHO. Only the lines with an Einstein coefficient logarithm higher 3 3 3 than ´4.5 and their upper level energy below 400 K are displayed in the tables. Due to the high line density for CH OCH and CH CHO, only the lines with an upper energy 3 3 3 levelbelow200Kareshownforthesespecies. Noothercomplexmoleculesweredetected towardanyofthesources. Formoleculeswithweaklines,weonlyusedtheIRAMdata sincetheSMAobservationshavelowerspectralresolutionandsignal-to-noiseratio. 3.2. Spatial origin of the line emission Figures3,4,and5presentthelinefluxesofkeymoleculesfromboththesingle-dishand SMA observations toward the three MYSOs. The IRAM beam is 6.2 to 7.2 times larger than the SMA mask ((IRAM radius at 227-243 GHz: 5–5.42)2/(SMA mask radius: 22)2). Articlenumber,page8of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics Table2: CH OHlinesdatafromIRAM30mspectra. 3 Freq Eup logA gu Transition ş NGC7538IRS9 ş W3IRS5 ş AFGL490 FdV FHWM FdV FHWM FdV FHWM (GHz) (K) (Jykms´1) (kms´1) (Jykms´1) (kms´1) (Jykms´1) (kms´1) 239.746 49.1 -4.25 11 5 -4 A` 20.7˘2.3 3.70˘0.03 6.1˘0.8 2.32˘0.04 4.6˘0.7 4.4˘0.2 1,5 1,4 241.700 47.9 -4.22 11 5 -4 E 30.8˘3.3 3.47˘0.02 7.1˘0.9 2.43˘0.04 6.7˘0.9 3.53˘0.07 0,5 0,4 241.767 40.4 -4.24 11 5 -4 E 60.7˘6.3 3.37˘0.01 11.2˘1.3 2.98˘0.03 16.7˘1.9 3.11˘0.02 -1,5 -1,4 241.791 34.8 -4.22 11 5 -4 A 69.2˘7.1 3.37˘0.01 12.6˘1.5 2.91˘0.03 20.3˘2.2 3.09˘0.02 0,5 0,4 241.807 115.2 -4.66 22 5 -4 A˘ 2.3˘0.5 4.5˘0.4 1.6˘0.3 1.58˘0.09 ă1.4 - 4 4 241.813 122.7 -4.66 11 5 -4 E 1.1˘0.4 3.6˘0.6 1.2˘0.3 1.7˘0.2 ă1.4 - -4,2 -4,1 241.830 130.8 -4.66 11 5 -4 E ă1.1 - 1.3˘0.3 2.0˘0.2 ă1.4 - 4,1 4,0 241.833 84.6 -4.41 22 5 -4 A˘ 13.3˘1.6 4.61˘0.06 5.5˘0.7 2.18˘0.04 3.6˘0.6 4.9˘0.2 3 3 241.842 72.5 -4.29 11 5 -4 A´ 10.1˘1.4 5.5˘0.1 3.2˘0.5 1.90˘0.08 2.6˘0.6 6.8˘0.5 2,4 2,3 241.844 82.5 -4.41 11 5 -4 E 2.4˘0.5 3.3˘0.3 3.2˘0.5 2.2˘0.1 1.5˘0.3 3.50˘0.02 3,2 3,1 241.852 97.5 -4.41 11 5 -4 E 3.2˘0.6 5.5˘0.4 2.2˘0.4 2.1˘0.1 1.5˘0.4 6.5˘0.8 -3,3 -3,2 241.879 55.9 -4.22 11 5 -4 E 23.5˘2.6 3.64˘0.02 6.7˘0.9 2.58˘0.05 5.2˘0.7 4.1˘0.1 1,4 1,3 241.888 72.5 -4.29 11 5 -4 A` 8.5˘1.1 4.28˘0.09 3.8˘0.5 2.04˘0.06 2.5˘0.5 5.2˘0.3 2,3 2,2 241.904 60.7 -4.29 11 5 -4 E 15.9˘1.7 3.66˘0.02 5.0˘0.6 2.57˘0.03 3.9˘0.5 3.85˘0.07 -2,4 -2,3 241.905 57.1 -4.30 11 5 -4 E 15.9˘1.7 3.66˘0.02 5.0˘0.6 2.57˘0.03 3.9˘0.5 3.85˘0.07 2,3 2,2 Table3: CH OHlinesextractedfromSMAobservationswitha22-radiusmask. 3 Freq Eup logA gu Transition ş NGC7538IRS9 ş W3IRS5 ş AFGL490 (GHz) (K) FdV FHWM FdV FHWM FdV FHWM (Jykms´1) (kms´1) (Jykms´1) (kms´1) (Jykms´1) (kms´1) 239.746 49.1 -4.25 11 5 -4 A` 7.6˘1.1 4.6˘0.2 2.3˘0.5 1.9˘0.2 3.0˘0.7 4.6˘0.5 1,5 1,4 241.700 47.9 -4.22 11 5 -4 E 7.3˘1.0 4.1˘0.2 2.8˘0.6 2.4˘0.2 3.7˘0.8 5.9˘0.5 0,5 0,4 241.767 40.4 -4.24 11 5 -4 E 8.2˘1.1 3.5˘0.1 3.2˘0.6 2.3˘0.2 1.8˘0.5 2.6˘0.3 -1,5 -1,4 241.791 34.8 -4.22 11 5 -4 A 7.1˘1.0 3.16˘0.09 3.5˘0.7 2.9˘0.2 2.4˘0.6 4.9˘0.7 0,5 0,4 241.807 115.2 -4.66 22 5 -4 A˘ 2.1˘0.7 6˘1 1.4˘0.5 2.4˘0.5 ă1.1 - 4 4 241.813 122.7 -4.66 11 5 -4 E 1.0˘0.4 3.6˘0.9 1.0˘0.5 2.8˘0.8 ă1.1 - -4,2 -4,1 241.830 130.8 -4.66 11 5 -4 E ă0.8 - ă1.1 - ă1.1 - 4,1 4,0 241.833 84.6 -4.41 22 5 -4 A˘ 6.4˘1.1 4.7˘0.3 3.1˘0.7 2.9˘0.3 1.8˘0.6 4.6˘0.8 3 3 241.852 97.5 -4.41 11 5 -4 E 1.9˘0.6 3.4˘0.5 1.4˘0.5 1.5˘0.4 ă1.1 - -3,3 -3,2 241.879 55.9 -4.22 11 5 -4 E 5.5˘0.9 3.4˘0.2 2.6˘0.6 2.3˘0.2 1.9˘0.6 4.7˘0.7 1,4 1,3 241.888 72.5 -4.29 11 5 -4 A` 4.6˘0.8 5.2˘0.3 1.6˘0.5 1.6˘0.2 1.8˘0.7 7˘2 2,3 2,2 241.904 60.7 -4.29 11 5 -4 E 5.3˘0.8 4.5˘0.1 1.7˘0.3 2.2˘0.2 1.7˘0.4 5.2˘0.5 -2,4 -2,3 241.905 57.1 -4.30 11 5 -4 E 5.3˘0.8 4.5˘0.1 1.7˘0.3 2.2˘0.2 1.7˘0.4 5.2˘0.5 2,3 2,2 Table4: CH CNlinesdatafromIRAM30mspectra. 3 Freq Eup logA gu Transition şNGC7538IRS9 ş W3IRS5 ş AFGL490 (GHz) (K) FdV FHWM FdV FHWM FdV FHWM (Jykms´1) (kms´1) (Jykms´1) (kms´1) (Jykms´1) (kms´1) 239.023 258.9 -3.00 54 13 -12 1.6˘0.5 9˘2 ă1.0 - ă1.5 - 5 5 239.064 194.6 -2.97 54 13 -12 2.0˘0.7 9˘2 0.9˘0.3 6˘2 1.2˘0.4 6˘2 4 4 239.096 144.6 -2.95 108 13 -12 5.3˘0.8 6.0˘0.3 2.2˘0.4 2.2˘0.2 2.4˘0.6 8˘1 3 3 239.120 108.9 -2.94 54 13 -12 4.5˘0.7 5.7˘0.3 1.7˘0.4 2.8˘0.3 1.5˘0.5 6˘2 2 2 239.133 87.5 -2.93 54 13 -12 5.8˘0.8 4.6˘0.2 2.4˘0.4 2.4˘0.2 2.1˘0.5 4.9˘0.5 1 1 239.138 80.3 -2.93 54 13 -12 7.4˘1.0 5.2˘0.2 2.6˘0.4 2.1˘0.2 2.4˘0.5 5.4˘0.5 0 0 Thatmostemissionlinesinthesefiguresdonotdisplayafactorofsixorsevendifference between the IRAM 30m and SMA spectra demonstrates a non-uniform emission across the object. Some emission line fluxes, most notably CH CN, are similar (within a factor 3 oftwo)betweentheIRAM30mandSMAspectra,indicatingofalargecontributionfrom unresolvedemissionatthesourcecenter. Incontrast,littleornoCH CCHfluxfromthe 3 IRAM is recovered by the SMA, which indicates extended emission. The fact that some CH CCHIRAM30mfluxesaremorethan6.2–7.2ˆhigherthanthecorrespondingSMA 3 fluxes is explained by spatial filtering of large-scale emission and/or off-centered emis- Articlenumber,page9of28 EdithC.Fayolle etal.:Newconstraintsontheoriginsoforganics Table5: CH CNlinesdatafromSMAspectra. 3 Freq Eup logA gu Transition şNGC7538IRS9 ş W3IRS5 ş AFGL490 (GHz) (K) FdV FHWM FdV FHWM FdV FHWM (Jykms´1) (kms´1) (Jykms´1) (kms´1) (Jykms´1) (kms´1) 239.064 194.6 -2.97 54 13 -12 2.9˘0.9 7.6˘1.2 ă0.8 - ă1.9 - 4 4 239.096 144.6 -2.95 108 13 -12 5.1˘1.0 5.6˘0.4 2.9˘0.9 6.8˘1.2 ă1.9 - 3 3 239.120 108.9 -2.94 54 13 -12 4.4˘1.1 9.6˘1.0 1.2˘0.5 2.9˘0.9 1.8˘0.8 6˘2 2 2 239.133 87.5 -2.93 54 13 -12 5.6˘1.3 6.9˘0.7 3.1˘0.6 4.4˘0.4 1.8˘0.9 6˘2 1 1 239.138 80.3 -2.93 54 13 -12 5.2˘1.2 6.3˘0.6 2.1˘0.5 2.7˘0.4 1.8˘0.9 6˘2 0 0 Table6: CH CCHlinesdatafromIRAM30mspectra. 3 Freq Eup logA gu Transition ş NGC7538IRS9 ş W3IRS5 ş AFGL490 (GHz) (K) FdV FHWM FdV FHWM FdV FHWM (Jykms´1) (kms´1) (Jykms´1) (kms´1) (Jykms´1) (kms´1) 239.088 346.1 -4.07 16 14 -13 ă1.1 - ă0.7 - ă1.0 - 6 6 239.179 201.7 -4.88 58 14 -13 1.0˘0.3 3.4˘0.6 0.9˘0.3 2.5˘0.6 ă1.0 - 4 4 239.211 151.1 -4.00 16 14 -13 4.7˘0.7 3.1˘0.2 4.0˘0.5 2.00˘0.06 1.5˘0.3 3.5˘0.4 3 3 239.234 115.0 -4.85 58 14 -13 5.1˘0.7 2.71˘0.08 3.6˘0.5 1.98˘0.07 1.5˘0.4 3.0˘0.3 2 2 239.248 93.3 -4.84 58 14 -13 9.0˘1.1 2.92˘0.05 5.8˘0.7 2.2˘0.05 2.7˘0.4 2.3˘0.1 1 1 239.252 86.1 -4.84 58 14 -13 10.2˘1.2 2.74˘0.04 6.4˘0.8 2.12˘0.04 3.7˘0.5 2.9˘0.1 0 0 Table7: CH CCHlinesdatafromSMAspectra. 3 Freq Eup logA gu Transition şNGC7538IRS9 ş W3IRS5 ş AFGL490 (GHz) (K) FdV FHWM FdV FHWM FdV FHWM (Jykms´1) (kms´1) (Jykms´1) (kms´1) (Jykms´1) (kms´1) 239.088 346.1 -4.07 16 14 -13 ă0.9 - ă0.7 - ă1.0 - 6 6 239.179 201.7 -4.88 58 14 -13 ă0.9 - 0.9˘0.3 2.5˘0.6 ă1.0 - 4 4 239.211 151.1 -4.00 16 14 -13 1.8˘0.6 3.2˘0.5 ă1.1 - 1.0˘0.6 4.2˘1.5 3 3 239.234 115.0 -4.85 58 14 -13 1.3˘0.5 3.5˘0.7 ă1.1 - ă1.0 - 2 2 239.248 93.3 -4.84 58 14 -13 2.3˘0.7 3.5˘0.5 ă1.1 - ă1.0 - 1 1 239.252 86.1 -4.84 58 14 -13 2.4˘0.7 2.9˘0.4 ă1.1 - 1.6˘0.8 5.9˘1.9 0 0 sion. CH OH lines display a mixed behavior: lines with higher upper energies show 3 moreoverlapbetweentheIRAM30mandSMAspectrathanthecolderlines. TheIRAM 30m and SMA line fluxes for the 11 - 10 HNCO line at 241.774 GHz are close for 0,11 0,10 NGC7538IRS9andsimilarforW3IRS5,butnoneoftheIRAM30mfluxisrecoveredbythe AFGL490SMAobservations. Basedontheselines,HNCOemissionappearstobecoming from both the core and the envelope of NGC7538 IRS9, from the core of W3 IRS5 alone, andfromtheenvelopeofAFGL490.Thissource-to-sourcedifferencecouldpartiallycome from different excitation conditions in the three sources, and the excitation-abundance structure degeneracy can only be strictly broken by observation of additional lines. The simplestscenarioforexplainingourdetectionisforHNCOtohavebothanextendedand acompactorigin, however, andthisisalsosupportedbythereportedexcitationcharac- teristicsandemissionprofileofHNCOinothersources(Bisschopetal.2007). In Fig. 5 the signal-to-noise ratio is lower, but it is still clear that CH CHO toward 3 NGC7538 IRS9 only has extended emission since none of the IRAM 30m line flux is re- coveredintheSMAspectra. NoCH CHOlinesaredetectedintheothertwoMYSOsin 3 the spectral range where IRAM 30m and SMA observations overlap. CH OCH is de- 3 3 tectedtowardNGC7538IRS9andAFGL490,andinbothcasestentativeSMAdetections suggestthattheemissionoriginatesinthesourcecenters. Basedonthedifferentemission Articlenumber,page10of28

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.