ebook img

Complex Ball Quotients and Line Arrangements in the Projective Plane (MN-51) (Mathematical Notes, 51) PDF

228 Pages·2016·2.948 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex Ball Quotients and Line Arrangements in the Projective Plane (MN-51) (Mathematical Notes, 51)

Complex Ball Quotients and Line Arrangements in the Projective Plane Complex Ball Quotients and Line Arrangements in the Projective Plane Paula Tretkoff WithanappendixbyHans-ChristophImHof MathematicalNotes51 PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright(cid:1)c 2016byPrincetonUniversityPress PublishedbyPrincetonUniversityPress, 41WilliamStreet,Princeton,NewJersey08540 IntheUnitedKingdom:PrincetonUniversityPress, 6OxfordStreet,Woodstock,Oxfordshire,OX201TW AllRightsReserved LibraryofCongressCataloging-in-PublicationData Tretkoff,Paula,1957– Complexballquotientsandlinearrangementsintheprojectiveplane/ PaulaTretkoff. pagescm.–(Mathematicalnotes;51) Includesbibliographicalreferencesandindex. ISBN978-0-691-14477-1(pbk.:alk.paper)1.Curves,Elliptic. 2.Geometry, Algebraic. 3.Projectiveplanes. 4.Unitball. 5.Riemannsurfaces. I.Title. QA567.2.E44T742016 516.3(cid:1)52–dc23 2015016120 BritishLibraryCataloging-in-PublicationDataisavailable ThisbookhasbeencomposedinMinionPro Printedonacid-freepaper.∞ press.princeton.edu TypesetbySRNovaPvtLtd,Bangalore,India PrintedintheUnitedStatesofAmerica 1 3 5 7 9 10 8 6 4 2 TothememoryofFriedrichHirzebruch Contents Preface ix Introduction 1 1 TopologicalInvariantsandDifferentialGeometry 6 1.1 TopologicalInvariants 7 1.2 FundamentalGroupsandCoveringSpaces 10 1.3 ComplexManifoldsandMetrics 13 1.4 Divisors,LineBundles,theFirstChernClass 16 2 RiemannSurfaces,Coverings,andHypergeometric Functions 23 2.1 GenusandEulerNumber 23 2.2 MöbiusTransformations 25 2.3 MetricandCurvature 29 2.4 BehavioroftheEulerNumberunderFiniteCovering 33 2.5 FiniteSubgroupsofPSL(2,C) 34 2.6 GaussHypergeometricFunctions 36 2.7 TriangleGroups 41 2.8 TheHypergeometricMonodromyGroup 45 3 ComplexSurfacesandCoverings 47 3.1 CoveringsBranchedoverSubvarietieswithTransverse Intersections 47 3.2 DivisorClassGroupandCanonicalClass 49 3.3 Proportionality 54 3.4 Signature 59 3.5 BlowingUpPoints 61 4 AlgebraicSurfacesandtheMiyaoka-YauInequality 65 4.1 RoughClassificationofAlgebraicSurfaces 65 4.2 TheMiyaoka-YauInequality,I 70 4.3 TheMiyaoka-YauInequality,II 73 5 LineArrangementsinP (C)andTheirFiniteCovers 85 2 5.1 BlowingUpLineArrangements 87 5.2 Höfer’sFormula 88 viii Contents 5.3 ArrangementsAnnihilating R andHaving EqualRamificationalongAllLines 92 5.4 Blow-UpofaSingularIntersectionPoint 99 5.5 PossibilitiesfortheAssignedWeights 103 5.6 BlowingDownRationalCurvesand RemovingEllipticCurves 115 5.7 TablesoftheWeightsGivingProp=0 122 6 ExistenceofBallQuotientsCoveringLineArrangements 126 6.1 ExistenceofFiniteCoversbyBallQuotientsofWeighted Configurations:TheGeneralCase 128 6.2 RemarksonOrbifoldsandb-Spaces 133 6.3 KX(cid:1)(cid:1) +D(cid:1)(cid:1) forWeightedLineArrangements 135 6.4 ExistenceQuestion 139 6.5 Amplenessof KX(cid:1)(cid:1) +D(cid:1)(cid:1) 140 6.6 Log-TerminalSingularitiesandLCS 145 6.7 ExistenceTheoremforLineArrangements 148 6.8 IsotropySubgroupsoftheCoveringGroup 164 7 AppellHypergeometricFunctions 167 7.1 TheActionof S ontheBlown-UpProjectivePlane 168 5 7.2 AppellHypergeometricFunctions 173 7.3 ArithmeticMonodromyGroups 181 7.4 SomeRemarksabouttheSignature 186 ATorsion-FreeSubgroupsofFiniteIndex 189 A.1 FuchsianGroups 190 A.2 Fenchel’sConjecture 191 A.3 ReductiontoTriangleGroups 192 A.4 TriangleGroups 193 B KummerCoverings 197 Bibliography 205 Index 213 Preface Thisbookisdevotedtoastudyofquotientsofthecomplex2-ballyieldingfinite coveringsoftheprojectiveplanebranchedalongcertainlinearrangements.It is intended to be an introduction for graduate students and for researchers. Wegiveacompletelistoftheknownweightedlinearrangementsthatcangive risetosuchballquotients,andthenweprovideajustificationfortheexistence oftheballquotients.TheMiyaoka-Yauinequalityforsurfacesofgeneraltype, anditsanalogueforsurfaceswithanorbifoldstructure,playsacentralrole. The book has its origins in a Nachdiplom course given by F. Hirzebruch at the ETH Zürich during the Spring of 1996. I (née Cohen) was at that time Directeur de Recherche au CNRS at the Université de Lille 1, and a guestofETHZürich.Iattendedthecourse,lecturedonsomeofthematerial on hypergeometric functions, and made the original set of notes for all Hirzebruch’s lectures. I also presented related material as a two-semester graduatecourseatPrincetonUniversityduringtheacademicyear2001/2002 whileIwasVisitingProfessorthere.TheETHNachdiplomcoursenoteswere subsequentlydevelopedandrefinedbyF.Hirzebruchandmeduringregular visitstotheMaxPlanckInstituteinBonn.IthankETHZürich,MPIBonn,and PrincetonUniversityfortheirsupportduringthepreparationofthisbook. After working on the book together for some years, F. Hirzebruch and I decided even moreadditional materialseemed desirable and, at that point, F.Hirzebruchaskedmetocompletethebookundermyownname.Thebook entitled Geradenkonfigurationen und Algebraische Flächen, Vieweg, 1987, by G. Barthel, F. Hirzebruch, and T. Höfer, served as a valuable resource and reference.ThisbookisinGerman,andwehaveminedsomeofitscontentsas needed.Thepresentbookassumeslessbackgroundthantheearlierbook,and werevisitinmoredetailseveralofitsimportantsubjects.Wehavealsoadded materialnotfoundinthatbook.Forexample,wepresentamoreorganizedlist of the possible weights on line arrangements that yield finite covers that are ballquotients,andwedevoteawholechapter,ratherthanjustafewpages,to thequestionoftheexistenceofsuchballquotients.Also,weincludematerial onhypergeometricfunctions. The book is dedicated to the memory of F. Hirzebruch. I am grateful beyondwordsforthetimeandattentionhepaidtothisprojectamidthemany commitmentsofhisimportantandbusylife.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.