ebook img

Complex Analysis: Theory and Applications (Graduate Texts in Condensed Matter) (de Gruyter Textbook) PDF

423 Pages·2019·1.89 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex Analysis: Theory and Applications (Graduate Texts in Condensed Matter) (de Gruyter Textbook)

TeodorBulboacǎ,SantoshB.Joshi,andPranayGoswami ComplexAnalysis Also of Interest ComplexAnalysis. AFunctionalAnalyticApproach FriedrichHaslinger,2017 ISBN978-3-11-041723-4,e-ISBN(PDF)978-3-11-041724-1, e-ISBN(EPUB)978-3-11-042615-1 ElementaryFunctionalAnalysis MaratV.Markin,2018 ISBN978-3-11-061391-9,e-ISBN(PDF)978-3-11-061403-9, e-ISBN(EPUB)978-3-11-061409-1 RealAnalysis. MeasureandIntegration MaratV.Markin,2019 ISBN978-3-11-060097-1,e-ISBN(PDF)978-3-11-060099-5, e-ISBN(EPUB)978-3-11-059882-7 AppliedNonlinearFunctionalAnalysis. AnIntroduction NikolaosS.Papageorgiou,PatrickWinkert,2018 ISBN978-3-11-051622-7,e-ISBN(PDF)978-3-11-053298-2, e-ISBN(EPUB)978-3-11-053183-1 FunctionalAnalysis. ATerseIntroduction GerardoChacón,HumbertoRafeiro,JuanCamiloVallejo,2016 ISBN978-3-11-044191-8,e-ISBN(PDF)978-3-11-044192-5, e-ISBN(EPUB)978-3-11-043364-7 Teodor Bulboacǎ, Santosh B. Joshi, and Pranay Goswami Complex Analysis | Theory and Applications MathematicsSubjectClassification2010 30-XX Authors Prof.Dr.Habil.TeodorBulboacǎ Babeş-BolyaiUniversity FacultyofMathematicsandComputerScience Str.MihailKogălniceanuNr.1 400084Cluj-Napoca Romania [email protected] Prof.Dr.SantoshB.Joshi WalchandCollegeofEngineering DepartmentofMathematics 416415Maharastra India [email protected] Prof.Dr.PranayGoswami AmbedkarUniversityDelhi KashmereGateCampus LothianRoad,KashmereGate 110006Delhi India [email protected] ISBN978-3-11-065782-1 e-ISBN(PDF)978-3-11-065786-9 e-ISBN(EPUB)978-3-11-065803-3 LibraryofCongressControlNumber:2019938423 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:Lokal_Profil(Grafic»conformal_grid«)–MichaelBernhart(surface) Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Contents Preface|XI 1 Complexnumbers|1 1.1 Thefieldofthecomplexnumbers|1 1.2 Thecomplexplane|3 1.3 Thetopologicalandmetricstructureofthecomplexplane|6 1.3.1 Basicdefinitionsandnotation|6 1.4 Complexfunction,limits,continuity|9 1.5 Thecompactifiedcomplexplane|10 1.5.1 Thegeometricinterpretationoftheφfunction|12 ℂ̂ 1.5.2 Thetopologicalstructureof |12 1.6 Exercises|14 2 Holomorphicfunctions|17 2.1 Thederivativeoftherealvaluedcomplexfunctions|17 2.2 Thedifferentiabilityofacomplexfunction|19 2.3 Thederivativeofacomplexfunction|23 2.3.1 Thepropertiesofthederivative|25 2.4 Thegeometricinterpretationofthederivative|29 2.5 Entirefunctions|33 2.5.1 Thepolynomialfunction|33 2.5.2 Theexponentialfunction|33 2.5.3 Complextrigonometricfunctions|34 2.5.4 Complexhyperbolicfunctions|35 2.6 Bilineartransforms|35 2.6.1 Decompositionsinelementaryfunctions|36 2.7 TheMöbius-typegroups|39 2.8 Multivaluedfunctions|43 2.8.1 Thelogarithmicfunction|43 2.8.2 Inversetrigonometricfunctions|45 2.8.3 Thepowerfunction|46 2.9 Exercises|47 2.9.1 Realvariablecomplexfunctions|47 2.9.2 Thederivativeofacomplexfunction|47 2.9.3 Entirefunctions|49 2.9.4 Bilineartransforms|49 3 Thecomplexintegration|51 VI | Contents 3.1 Thehomotopictheoryofthepaths|51 3.1.1 Simplyconnecteddomains|55 3.1.2 Functionsofboundedvariationandpaths|58 3.2 Thecomplexintegral|60 3.2.1 TheRiemann–Stieltjesintegralforcomplexvaluedfunctions|60 3.3 TheCauchytheorem|66 3.3.1 Theconnectionbetweentheintegralandtheprimitivefunction|66 3.3.2 TheCauchytheorem|74 3.4 TheCauchyformulaforthedisc|79 3.5 Theanalyticalbranchesofmultivaluedfunctions|82 3.6 Theindexofapath(curve)withrespecttoapoint|84 3.7 Cauchyformulaforclosedcurves|87 3.8 SomeconsequencesofCauchyformula|88 3.9 SchwarzandPoissonformulas|91 3.10 Exercises|94 3.10.1 Thecomplexintegral|94 3.10.2 TheCauchytheorem|96 3.10.3 TheCauchyformulaforthedisc|97 3.10.4 SomeconsequencesofCauchyformula|101 3.10.5 Multivaluedfunctionsanalyticalbranches|102 4 Sequencesandseriesofholomorphicfunctions|105 4.1 Sequencesofholomorphicfunctions|105 4.2 Seriesoffunctions|107 4.3 Powerseries|108 4.4 Theanalyticityofholomorphicfunctions|111 4.5 Thezerosofholomorphicfunctions|114 4.6 Themaximumprincipleoftheholomorphicfunctions|117 4.7 Laurentseries|122 4.8 Isolatedsingularpoints|127 4.9 Meromorphicfunctions|131 4.10 Exercises|134 4.10.1 Powerseries|134 4.10.2 TaylorandLaurentseries|135 4.10.3 Isolatedsingularpoints|138 4.10.4 Themodulemaximumoftheholomorphicfunctions|139 5 Residuetheory|141 5.1 Residuetheorem|141 5.2 Applicationsoftheresiduetheoremtothecalculationofthe integrals|144 5.3 Thestudyofmeromorphicfunctionswiththeresiduetheorem|158 Contents | VII 5.4 Exercises|165 5.4.1 Residuetheorem|165 5.4.2 Applicationsoftheresiduetheoremtothecalculationofthe trigonometricintegrals|168 5.4.3 Applicationsoftheresiduetheoremtothecalculationoftheimproper integrals|169 5.4.4 Thestudyofmeromorphicfunctionsusingtheresiduetheorem|169 6 Conformalrepresentations|171 6.1 Specialclassesofholomorphicfunctions|171 6.2 Univalentfunctions|175 6.3 Theproblemofconformalrepresentation|179 6.4 TheRiemannmappingtheorem|181 6.5 Exercises|187 7 Solutionstothechapterwiseexercises|191 7.1 SolutionstotheexercisesofChapter1|191 7.2 SolutionstotheexercisesofChapter2|199 7.3 SolutionstotheexercisesofChapter3|218 7.4 SolutionstotheexercisesofChapter4|277 7.5 SolutionstotheexercisesofChapter5|322 7.6 SolutionstotheexercisesofChapter6|380 Bibliography|405 Index|407 | DedicatedtothememoryofProfessorPetruT.Mocanu(1931–2016)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.