ebook img

Complex Abelian Varieties PDF

635 Pages·2010·4.213 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Complex Abelian Varieties

Grundlehren der mathematischen Wissenschaften 302 ASeriesofComprehensiveStudiesinMathematics Serieseditors A.Chenciner S.S.Chern B.Eckmann P.delaHarpe F.Hirzebruch N.Hitchin L.Ho¨rmander M.-A.Knus A.Kupiainen G.Lebeau M.Ratner D.Serre Ya.G.Sinai N.J.A.Sloane B.Totaro A.Vershik M.Waldschmidt Editor-in-Chief M.Berger J.Coates S.R.S.Varadhan Springer-Verlag Berlin Heidelberg GmbH Christina Birkenhake Herbert Lange Complex Abelian Varieties Second, Augmented Edition 1 3 ChristinaBirkenhake HerbertLange MathematischesInstitut UniversitätErlangen-Nürnberg Bismarckstraße11/2 91054Erlangen Germany e-mail: [email protected] [email protected] Cataloging-in-PublicationDataappliedfor AcatalogrecordforthisbookisavailablefromtheLibraryofCongress. BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetathttp://dnb.ddb.de Mathematics Subject Classification (2000): 14-02, 14KXX, 32G20, 14H37, 14H40,14H42,14F05,14G25 ISSN0072-7830 ISBN 978-3-642-05807-3 ISBN 978-3-662-06307-1 (eBook) DOI 10.1007/978-3-662-06307-1 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpart ofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmorinanyother way,andstorageindatabanks.Duplicationofthispublicationorpartsthereofis permittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfrom Springer-Verlag Berlin Heidelberg GmbH . ViolationsareliableforprosecutionundertheGermanCopyright Law. springeronline.com ©Springer-VerlagBerlinHeidelberg1980,1983,1994,2004 Originally published by Springer-Verlag Berlin Heidelberg New York in 2004 The use of general descriptive names, registered names, trademarks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuch namesareexemptfromtherelevantprotectivelawsandregulationsandtherefore freeforgeneraluse. Coverdesign:design&productionGmbH,Heidelberg Printedonacid-freepaper 41/3142db-543210 Preface to the Second Edition Duringthelast15yearsthetheoryofabelianvarietieshasseenprogressinseveral directions.Weincludesomeofitinthissecondedition.Infact,therearefivenew chapters,onautomorphisms,onvectorbundlesonabelianvarieties,somenewresults onlinebundlesandthethetadivisor,andoncyclesonabelianvarieties.Finallywe giveanintroductiontotheHodgeconjectureforabelianvarieties. Whereasthefirsteditionwasmoreorlessself-contained,thiscannotbesaidanymore ofthenewchapters.Weapplyseveralresults,theproofsofwhichwouldbebeyond the scope of the book. To give an example, the theory of abelian varieties relies heavilyonMukai’sFourierfunctorandthisisexpressedinthelanguageofderived categories.Forreadersnotfamiliarwiththislanguage,wegiveashortintroduction inAppendixD.Fortheconvenienceofthereaderwecompilemoreoverinthreeother appendicessomemoreadvancedresultsonAlgebraicGeometry,whichareneeded inthenewchapters. EachchapterendswithasectioncalledExercisesandFurtherResults.Apartfroma fewexercisesitcontainsmainlysomerecentresultsforwhichwewouldhaveliked toincludefullproofs,butfoundneitherthetimenorthespacetodoso. WewouldliketoexpressourgratitudetoO.Debarre,whopointedoutseveralerrors inthefirstedition,toM.S.NarasimhanforsomevaluablehintsandtoW.-D.Geyer foransweringmanyofourquestions.Finally,wethankS.Hu¨bnerforsomeadvice concerningLatex. Erlangen,December2003 Ch.Birkenhake H.Lange Contents PrefacetotheSecondEdition ..................................... V Introduction.................................................... 1 Notation ....................................................... 5 1. ComplexTori............................................... 7 1.1 ComplexTori ............................................ 7 1.2 Homomorphisms ......................................... 9 1.3 CohomologyofComplexTori .............................. 13 1.4 TheHodgeDecomposition................................. 15 1.5 ExercisesandFurtherResults............................... 21 2. LineBundlesonComplexTori ................................ 23 2.1 LineBundlesonComplexTori.............................. 24 2.2 TheAppell-HumbertTheorem.............................. 29 2.3 CanonicalFactors ........................................ 32 2.4 TheDualComplexTorus .................................. 34 2.5 ThePoincare´ Bundle ...................................... 37 2.6 ExercisesandFurtherResults............................... 41 3. CohomologyofLineBundles.................................. 45 3.1 Characteristics ........................................... 46 3.2 ThetaFunctions .......................................... 49 3.3 ThePositiveSemidefiniteCase ............................. 54 3.4 TheVanishingTheorem ................................... 56 3.5 CohomologyofLineBundles............................... 61 3.6 TheRiemann-RochTheorem ............................... 64 3.7 ExercisesandFurtherResults............................... 66 4. AbelianVarieties............................................ 69 4.1 PolarizedAbelianVarieties................................. 70 4.2 TheRiemannRelations.................................... 73 4.3 TheDecompositionTheorem............................... 74 4.4 TheGaussMap .......................................... 81 4.5 ProjectiveEmbeddings .................................... 84 VIII Contents 4.6 SymmetricLineBundles................................... 88 4.7 SymmetricDivisors....................................... 92 4.8 KummerVarieties ........................................ 97 4.9 MorphismsintoAbelianVarieties ...........................100 4.10 ThePontryaginProduct....................................102 4.11 HomologicalVersusNumericalEquivalence ..................105 4.12 ExercisesandFurtherResults...............................109 5. EndomorphismsofAbelianVarieties ........................... 113 5.1 TheRosatiInvolution .....................................114 5.2 Polarizations.............................................119 5.3 Norm-EndomorphismsandSymmetricIdempotents............122 5.4 EndomorphismsAssociatedtoCycles........................128 5.5 TheEndomorphismAlgebraofaSimpleAbelianVariety .......131 5.6 ExercisesandFurtherResults...............................140 6. ThetaandHeisenbergGroups................................. 145 6.1 ThetaGroups ............................................146 6.2 ThetaGroupsunderHomomorphisms........................149 6.3 TheCommutatorMap.....................................151 6.4 TheCanonicalRepresentationoftheThetaGroup .............153 6.5 TheIsogenyTheorem .....................................156 6.6 HeisenbergGroupsandThetaStructures .....................159 6.7 TheSchro¨dingerRepresentation ............................164 6.8 TheIsogenyTheoremforFiniteThetaFunctions ..............166 6.9 SymmetricThetaStructures ................................169 6.10 ExercisesandFurtherResults...............................174 7. EquationsforAbelianVarieties................................ 179 7.1 TheMultiplicationFormula ................................180 7.2 SurjectivityoftheMultiplicationMap........................184 7.3 ProjectiveNormality ......................................187 7.4 TheIdealofanAbelianVarietyinP ........................190 N 7.5 Riemann’sThetaRelations.................................196 7.6 CubicThetaRelations.....................................198 7.7 ExercisesandFurtherResults...............................203 8. Moduli .................................................... 209 8.1 TheSiegelUpperHalfSpace ...............................210 8.2 TheAnalyticModuliSpace ................................213 8.3 LevelStructures ..........................................216 8.3.1 LevelD-Structure..................................217 8.3.2 GeneralizedLeveln-Structure........................218 8.3.3 DecompositionoftheLattice.........................219 8.4 TheThetaTransformationFormula,PreliminaryVersion........220 8.5 ClassicalThetaFunctions ..................................222 Contents IX 8.6 TheThetaTransformationFormula,FinalVersion .............227 8.7 TheUniversalFamily .....................................229 8.8 TheActionoftheSymplecticGroup.........................232 8.9 OrthogonalLevelD-Structures .............................234 8.10 TheEmbeddingofA (D) intoProjectiveSpace..............235 D 0 8.11 ExercisesandFurtherResults...............................239 9. ModuliSpacesofAbelianVarietieswithEndomorphismStructure.. 243 9.1 AbelianVarietieswithEndomorphismStructure ...............245 9.2 AbelianVarietieswithRealMultiplication....................246 9.3 SomeNotation ...........................................251 9.4 TotallyIndefiniteQuaternionMultiplication...................254 9.5 TotallyDefiniteQuaternionMultiplication....................257 9.6 FamiliesofAbelianVarietieswithComplexMultiplication......262 9.7 GroupActionsonH andH .............................267 r,s m 9.8 ShimuraVarieties.........................................270 9.9 TheEndomorphismAlgebraofaGeneralMember.............274 9.10 ExercisesandFurtherResults...............................279 10. AbelianSurfaces ............................................ 281 10.1 Preliminaries.............................................282 10.2 The16 -ConfigurationoftheKummerSurface ................285 6 10.3 AnEquationfortheKummerSurface ........................290 10.4 Reider’sTheorem.........................................293 10.5 PolarizationsofType(1,4) ................................300 10.6 ProductsofEllipticCurves.................................304 10.7 TheCobleHypersurface ofaPrincipallyPolarizedAbelianSurface ....................308 10.8 ExercisesandFurtherResults...............................310 11. JacobianVarieties........................................... 315 11.1 DefinitionoftheJacobianVariety ...........................316 11.2 TheThetaDivisor ........................................322 11.2.1 ThetaCharacteristics ...............................325 11.2.2 TheSingularityLocusof(cid:2)..........................325 11.3 ThePoincare´ BundlesforaCurveC .........................327 11.4 TheUniversalProperty ....................................330 11.5 CorrespondencesofCurves ................................333 11.6 EndomorphismsAssociatedtoCurvesandDivisors ............335 11.7 ExamplesofJacobians ....................................337 11.8 TheCriterionofMatsusaka-Ran ............................341 11.9 TrisecantsoftheKummerVariety ...........................344 11.10 Fay’sTrisecantIdentity....................................347 11.11 AlbaneseandPicardVarieties ..............................353 11.12 ExercisesandFurtherResults...............................359 X Contents 12. PrymVarieties.............................................. 363 12.1 AbelianSubvarietiesofaPrincipallyPolarizedAbelianVariety ..364 12.2 Prym-TyurinVarieties .....................................368 12.3 PrymVarieties ...........................................372 12.4 TopologicalConstructionofPrymVarieties ...................374 12.5 TheAbel-PrymMap ......................................378 12.6 TheThetaDivisorofaPrymVariety.........................381 12.7 Recillas’Theorem ........................................385 12.8 Donagi’sTetragonalConstruction ...........................388 12.9 Kanev’sCriterion.........................................394 12.10 TheSchottky-JungRelations ...............................399 12.11 ExercisesandFurtherResults...............................406 13. Automorphisms............................................. 411 13.1 Fixed–PointFormulas .....................................412 13.2 TheFixed–PointSetofaFiniteAutomorphismGroup..........413 13.3 AbelianVarietiesofCM-Type..............................417 13.4 AbelianSurfaceswithFiniteAutomorphismGroup ............421 13.5 Poincare´’sReducibilityTheoremwithAutomorphisms .........428 13.6 TheGroupAlgebraDecompositionofanAbelianVariety .......431 13.7 ExercisesandFurtherResults...............................436 14. VectorbundlesonAbelianVarieties............................ 439 14.1 SomePropertiesofthePoincare´ Bundle......................440 14.2 TheFourierTransformforWIT–Sheaves .....................444 14.3 SomePropertiesoftheFourierTransform ....................448 14.4 TheDualPolarization .....................................453 14.5 Application:GlobalGenerationofVectorBundles .............455 14.6 PicardSheaves ...........................................459 14.7 TheFourierTransformofaComplex ........................464 14.8 VectorBundlesonAbelianSurfaces .........................469 14.9 ExercisesandFurtherResults...............................476 15. FurtherResultsonLineBundlesantheThetaDivisor ............ 479 15.1 VeryAmpleLineBundlesonGeneralAbelianVarieties.........480 15.2 SyzygiesofLineBundlesonAbelianVarieties ................484 15.3 SeshadriConstants........................................488 15.4 BoundsforSeshadriConstants..............................491 15.5 TheMinimalLengthofaPeriod ............................496 15.6 SeshadriConstantsofLineBundlesonAbelianSurfaces........503 15.7 SubvarietiesofAbelianVarieties ............................507 15.8 SingularitiesoftheThetaDivisor............................512 15.9 ExercisesandFurtherResults...............................517

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.