ZOOLOGICAL RESEARCH Complete mitochondrial genome of the Thai Red Junglefowl (Gallus gallus) and phylogenetic analysis DEAREDITOR, allvariantsthenoutput.UsingtheIntegrativeGenomicsViewer (Thorvaldsdóttiretal.,2013),wecheckedthebamfileexported byTorrentSuite5.0.2toconfirmthescoredvariants. In this study, we sequenced the complete mitochondrial Phylogenetic analysis was performed using complete genome (mitogenome) of the Thai Red Junglefowl (RJF; mtDNA sequences of all major haplogroups and Gallus gallus) using the next-generation sequencing (NGS) sub-haplogroups, as defined by Miao et al. (2013) and platform of the Ion Torrent PGM. Samples were taken from Pengetal.(2015).AllmitogenomeswerealignedbyClustalW, Mae Wang District, Chiang Mai Province, northern Thailand. thenanalyzedbymaximumparsimony(MP)inMEGA7.0with Our data showed the complete mitogenome to be 16 785 1000bootstrapreplicates(Tamuraetal.,2011). bp in length, composed by 13 protein-coding genes, 22 ThecompletemitogenomesequenceoftheThaiRJF(16785 tRNA genes, two rRNA genes, and one control region. The bp; GSA accession No.: PRJCA000287, GenBank accession genomenucleotidecompositionwas30.3%A,23.7%T,32.5% No.: MG605671) had an overall base composition of 30.3% C, and 13.5% G, resulting in a high percentage of A+T for A, 23.7% for T, 32.5% for C, and 13.5% for G, with high (50.4%). Phylogeneticanalysisrevealedthatthemitogenome a A+T content of 54.0%. The mitogenome consisted of 13 belonged to haplogroup X, whereas those of all domestic protein-coding genes, 22 tRNA genes, two rRNA genes, and chickens belong to haplogroups A to G. This newly released a displacement loop (D-loop). Most mitogenome genes were mitogenome sequence will advance further evolutionary and encodedontheheavystrand,exceptforeighttRNAgenesand population genetics study of the RJF and domestic chicken. one protein-coding gene (ND6), which were encoded on the TheavailabilityoftheG.gallusmitogenomewillalsocontribute light strand. Some protein-coding genes shared the start and tofurtherconservationgeneticsresearchofauniquespecies, stopcodons;forinstance,all13genesbeganwithATG,except listedas‘datadeficient’inThailand. for COX1, which started with GTG, and of the remaining 12 The Red Junglefowl (RJF; Gallus gallus) is a major wild protein-coding genes, nine (ND1, COX2, ATPase8, ATPase6, ancestor of the domestic chicken (Darwin, 1875; Liu et ND3,ND4L,ND5,cytb,andND6)sharedthestopcodonTAA, al., 2006; Miao et al., 2013). Early studies based on two (COX3 and ND4) shard the stop codon “T– –”, and ND2 mitochondrial DNA (mtDNA) revealed that the Thai RJF has usedTAG.Thelengthsofthe12SrRNAand16SrRNAgenes acloserelationshipwiththedomesticchicken(Fumihitoetal., were976bpand1622bp,respectively. 1994; Fumihito et al., 1996), implying that Thailand is likely As the RJF is a wild type of Gallus gallus, it differed a domestication center of the chicken. To the best of our from all major domestic haplogroups (A to G). We calculated knowledge, no complete mtDNA genome (i.e., mitogenome) the differences between the Thai RJF and randomly selected sequenceoftheThaiRJFhasbeenreported.Inthisstudy,we individualswithhaplogroupsAtoG(Table1). Comparedwith collectedaRJFsamplefromtheMaeWangDistrictofChiang the common domestic haplogroups, the RJF had 40 different MaiProvinceinnorthernThailand(permissionprovidedbythe basepairsonaverage(range:29–53). Thai Institute of Animals for Scientific Purpose Development (No. U1-01205-2558)). The complete mitochondrial genome wassubmittedtoGenBank(accessionNo.:MG605671). Genomic DNA was extracted from whole blood using Received:18September2017;Accepted:13February2018 the HiPure Tissue DNA Micro Kit (Magen, China). The Foundation items: This study was supported by the National Key PCR amplification, library construction, and next-generation Research and Development Program (2016YFC1200705), Southeast sequencing were in accordance with our earlier study (Chen Asia Biodiversity Research Institute, Chinese Academy of Sciences et al., 2016). We used a de novo long fragment PCR (Y4ZK111B01: 2015CASEABRI002), Ministry of Science and and NGS strategy to obtain high quality mtDNA reads and TechnologyofChina(2012FY110800),ChineseAcademyofSciences excludeNTMTpseudogenes. Wefollowedcaveatsforquality control in mtDNA genomic studies of domestic animals (Shi (KFZD-SW-208), and Yunnan Provincial Science and Technology et al., 2014). The generated sequence was aligned against Department areferencesequenceAP003321(Nishiborietal.,2005), with DOI:10.24272/j.issn.2095-8137.2017.028 SciencePress ZoologicalResearch39(2):127-129,2018 127 Table1Mitochondrialgenomedifferencesvs.ThaiRed replications using the MEGA 7 software package (Tamura et Junglefowl(PRJA000287) al., 2013). The tree showed that the Thai RJF mitogenome clusteredwithGU261692fromYunnan(Miaoetal.,2013)into Haplogroup Sequence Differentbasenumber(n) haplogroupX,asdefinedbyMiaoetal. (2013)andPengetal. A GU261684 48 (2015).Tothebestofourknowledge,alldomesticchickensare B GU261714 45 distributedinhaplogroupsAtoG.However,thearrangementof C1 GU261679 53 theRJFwasidenticaltohaplogroupX,whichisonlyfoundin wild chickens. In the MP tree, all haplogroups had very high D GU261683 42 bootstrapvalues,alllargerthan90%. TherootoftheMPtree E GU261712 29 wasinhaplogroupY,accordingtotheChickenReferenceTree F GU261717 34 in dometree.org (Peng et al., 2015). Thus, our study strongly G GU261676 31 supportedthepreviouslydefinedreferencetree. Here, we assembled the first complete mitogenome of the Thai RJF. This study will provide useful information for future A phylogenetic tree (Figure 1) of all known Gallus gallus evolutionaryandpopulationgeneticsanalysesoftheRJFand mitogenomeswasconstructedandtestedwith1000bootstrap domesticchicken. Figure1Phylogenetictreeof41completemitochondrialgenomesofGallusgallusconstructedwithmax imumparsimony Blackdotrepresentsthenewsampleinthisstudy.Bootstrapsupportvalues(>50)areshownatthenodes. COMPETINGINTERESFiTgSure 1 Phylogenetic tree of 41 complete mitochondrial gCehnaomtmeos nogf kGoanllSusu gwaalnlunsa poom1,2,#,Ya-JiangWu3,#, XingChen4,#,AdeniyiC.Adeola4,JingChen5, Theauthorsdeclarethatthecyohnasvteruncotecdom wpietthin gmianxteirmesutsm. parsimony. Wen-ZhiWang4,5,6,* AUTHORS’CONTRIBUBTlaIcOkN dSot represents the new sample in this study. Boo1tSstcrhaopo sluopfpAogrrt icvualltuueres (a>n5d0N) aatruer alResources,Universityof Phayao,Phayao56000,Thailand Theauthorsaloneareresposnhsoibwlenf oartt htheec onnotdenetsa. ndwritingofthispaper. 2SoutheastAsiaBiodiversityResearchInstitute(CAS-SEABRI), 128 www.zoores.ac.cn ChineseAcademyofSciences,YezinNayPyiTaw05282, ofAmerica,93:6792–6795. Myanmar LiuYP,WuGS,YaoYG,MiaoYW,LuikartG,BaigM,Beja-PereiraA,DingZL, 3StateKeyLaboratoryforConservationandUtilizationof PalanichamyMG,ZhangYP.2006.Multiplematernaloriginsofchickens:out Bio-resourceinYunnan,YunnanUniversity,KunmingYunnan oftheAsianjungles.MolecularPhylogeneticsandEvolution,38(1):12–19. 650091,China MiaoYW,PengMS,WuGS,OuyangYN,YangZY,YuN,LiangJP,Pianchou 4StateKeyLaboratoryofGeneticResourcesandEvolution, G,Beja-PereiraA,MitraB,PalanichamyMG,BaigM,ChaudhuriTK,Shen KunmingInstituteofZoology,ChineseAcademyofSciences, YY,KongQP,MurphyRW,YaoYG,ZhangYP.2013.Chickendomestication: KunmingYunnan650223,China anupdatedperspectivebasedonmitochondrialgenomes.Heredity,110(3): 5WildlifeForensicsScienceServiceCentre,KunmingYunnan 277–282. 650203,China NishiboriM,ShimogiriT,HayashiT,YasueH.2005.Molecularevidencefor 6GuizhouAcademyofTestingandAnalysis,GuizhouAcademyof hybridizationofspeciesinthegenusGallusexceptforGallusvarius.Animal Sciences,GuiyangGuizhou550002,China Genetics,36:367–375. #Authorscontributedequallytothiswork PengMS,FanL,ShiNN,NingT,YaoYG,MurphyRW,WangWZ,Zhang *Correspondingauthor,E-mail:[email protected] YP.2015.DomeTree: acanonicaltoolkitformitochondrialDNAanalysesin domesticatedanimals.MolecularEcologyResouces,15:1238–1242. REFERENCES ShiNN,FanL,YaoYG,PengMS,ZhangYP.2014.Mitochondrialgenomes ofdomesticanimalsneedscrutiny.MolecularEcology,23:5393–5397. Chen X, Ni G, He K, Ding ZL, Li GM, Adeola AC, Murphy RW, Wang Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics WZ, Zhang YP. 2016. An improved de novo pipeline for enrichment of Viewer(IGV):high-performancegenomicsdatavisualizationandexploration. high diversity mitochondrial genomes from Amphibia to high-throughput BriefingsinBioinformatics,14:178–192. sequencing.bioRxiv.080689. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. DarwinC.1875.Thevariationofanimalsandplantsunderdomestication. MEGA5:molecularevolutionarygeneticsanalysisusingmaximumlikelihood, BarrettPH,FreemanRB,editors.NewYork:NewYorkUniversityPress. evolutionarydistance,andmaximumparsimonymethods.MolecularBiology FumihitoA,MiyakeT,SumiSI,TakadaM,OhnoS,KondoN.1994.One andEvolution,28:2731–2739. subspecies of the red junglefowl (Gallus gallus gallus) suffices as the WangYQ,SongFH,ZhuJW,ZhangSS,YangYD,ChenTT,TangBX,Dong matriarchic ancestor of all domestic breeds. Proceedings of the National LL,DingN,ZhangQ,BaiZX,DongXN,ChenHX,SunMY,ZhaiS,Sun AcademyofSciencesoftheUnitedStatesofAmerica,91:12505–12509. YB, Yu L, Lan L, Xiao JF, Fang XD, Lei HX, Zhang Z, Zhao WM. 2017. FumihitoA,MiyakeT,TakadaM,ShinguR,EndoT,GojoborT,KondoN, GSA:GenomeSequenceArchive.GenomicsProteomicsBioinformatics,15: OhnoS.1996.Monophyleticoriginanduniquedispersalpatternsofdomestic 14–18. fowls.ProceedingsoftheNationalAcademyofSciencesoftheUnitedStates ZoologicalResearch39(2):127-129,2018 129