Odonatologica34(1):27-36 March 1,2005 Competition, predationandmicrohabitat selectionofZygopteralarvaeinalowlandriver T.A.Hofmann*andC.F.Mason DepartmentofBiologicalSciences,UniversityofEssex,Wivenhoe Park, Colchester,Essex,CO4 3SQ,UnitedKingdom ReceivedOctober20,2003/RevisedandAcceptedMay 12,2004 Themicrodistribution of4loticspp.wasinvestigatedinthefield. Microhabitatselection ofCalopteryxsplendensandErythrommanajaswasfurtherexaminedin thelaboratory,in- dividuallyatdifferentlarval densitiesandinthepresenceoftheotherspeciesandapredator. — E.najas,IschnuraelegansandPlatycnemispennipesshowedsignificantpreferencesfor particularaquaticmacrophytescomparedtoothersinthefield,whereasC.splendensdidnot discriminatebetweentheinvestigatedplantspecies.Onlylimitedspatialseparationwasap- parentbetweenthelarvaeofdifferentspecies,aspreferencesforthesamemacrophytespe- cies werefound.—Whenkeptseparateandatlowdensities,larvaeofC.splendensandE. najasinhabited significantlydifferentmicrohabitatsinthe laboratory.Athighintraspecific abundances,spatialoverlapbetween thetwospeciesbecame apparentasboth increasingly occupiedless preferredsubstrata,which isin concurrencewiththe ideal free distribution model ofhabitat selection.E.najasshowednochangeinperch selectioninthepresence of C. splendensathighdensities. - Inthis instance,intraspecificcompetitiontherefore ap- pearedtobemoreimportantthaninterspecificcompetitionwith otherZygopterain deter- miningthe microdistribution ofE.najas. In the field,theniches ofthetwospeciesmay bemoreadequatelyseparatedonthebasisofprey selectionorhuntingbehaviour. E.najas alsoactivelyreactedtothepresence ofapredator,indicatingsomeflexibilityofresponse regardingperchselection. INTRODUCTION ThelarvaeofOdonatafamiliesandespecially thoseoftheAnisoptera vary inphysi- calappearance, adapting themto specific microhabitats.Incontrast,mostZygoptera larvaeareessentially weed-dwelling anddifferonly slightly inbodyshape, withdiffer- encesmainly inbodysizeandactivity levels.Insuitablesectionsofrivers anumberof speciesofZygopteralarvae oftenoccurtogether instandsofaquatic macrophytes, but *Authortowhomallcorrespondenceshouldbeaddressed: telephonenumber:01206873298 email:[email protected] 28 T.A.Hofmann&C.F.Mason distinctionsonamicrohabitatlevelhaveseldombeeninvestigated. Anumberofques- tions thereforeremain. Doesspatial separation, e.g onthe basis of differentialperch selection, play animportantrole incompetitiveavoidance?Towhat degree areinnate preferences ofmicrohabitatselectionmodifiedby intra-andinterspecificcompetition forfoodandspace,predation andprey distribution? JOHANNSSON (1978)foundspatialdifferencestoberelativelymoreimportantthan temporal separation basedonlifehistory traits, inseparatingthenichesofCoenagrion pulchellum, Ischnuraelgans, Enallagma cyathigerum andErythromma najas inalen- tic system. Each species occupied amore or less distinctmicrohabitat,i.e. lily-beds, reed-bedsoropenmud,andareasfavouredby larvaedidnot necessarily correlatewith adultoviposition sitepreferencesandvariedbetweendifferentinstarsofthesamespe- cies.Directcompetitiveinteractions, asopposed tocompetitiveavoidanceduetoinnate preferences, havebeendemonstratedtoaffectlarvalcommunity structureanddistribu- tion(BENKEetal., 1982;MERRILL& JOHNSON, 1984).Influencesofinterference competitiononsurvivalrateswereshowninEnallagmaaspersum(PIERCE etal., 1985) andCelithemiselisa(JOHNSONetal., 1985),whereasashiftinmicrohabitatselection ofOnychogomphus uncatus occurred as a directresultofasymmetric interspecific in- terference,with increasing densitiesfoundinnormallyless preferred substrata(SUH- LING, 1996).Interspecific competition canevenresultincompleteexclusionofaspe- ciesfrompotentially suitablehabitats(CASTELLA,1987). Intraspecific interference,predominantly athighpopulation densities,affects surviv- al andgrowthrates (GRIBBIN &THOMPSON, 1990),as well as larval distribution, andevencannibalismhas beensuggested tooccur insomeodonates(CROWLEY et al., 1987). Thevulnerability oflarvaetopredation iscorrelatedwithmicrohabitatuseofvegetat- edandunvegetated patches, whichisoften species- andhabitatspecific. Microhabitat selectionmay shiftwiththeappearanceofapredator, so thatlow-risk vegetatedareas arepreferentially occupied (PIERCE, 1988).Aquatic plantsare utilisedinahighlynon- -randomfashion.Leaf-axialareas are preferred(WELLBORN&ROBINSON, 1987), as well as spatially heterogeneous macrophytes with complex leafstructures (LOM- BARDO, 1997),wheresusceptibility topredation is diminished.LOMBARDO (1997) suggested thatthepresenceofcomplex leafedplants mayberesponsible forthecoex- istenceofotherwisemutually exclusivespecies, duetolargeravailability ofmicrohab- itats asrefuges. Hiding behaviourhasbeenshowntobeconditionalupon thetypeof vegetation providinghabitatstructure.Active ‘hiding’as aformofantipredator behav- iouris morecommoninmacrophytehabitatsofsimple leafstructure(DIONNEetal., 1990).Interspecific differenceswithrespect toactivity patternsandability tocapture prey undervarying levelsofpredation canbeevoked toexplain differencesintheoc- currenceofOdonataspecies,e.g.betweenfish-containing andfishless ponds (PIERCE etal., 1985;JEFFRIES, 1990). STERNBERG(1994)concludedthattheobservedmicrohabitatdistributionofOdo- natalarvaeatanypointintimeistheresultofinnatespecies-specific habitatpreferences, Zygopteralarvaeinalowlandriver 29 modifiedby competitiveinteractionsthatmaychange locally andseasonally. Theaimsofthisinvestigation were(a) toexaminewhetherZygoptera larvaearespa- tiallyseparated ataloticsite,(b) to confirminnatemicrohabitatpreferences incontrol- ledlaboratory experiments forsomespecies and (c)toassess theeffectsofintra-and interspecific competitionandpredation onmicrohabitatpreferencesofthesespecies. METHODS FIELDSURVEY. —Four 1-minutesweepsamplesweretakenfromeachofthe followingpuremacro- phyte stands:Phragmitesaustralis,Rorippanosturtium-aquaticumandGlyceriamaximawithina20msec- tionoftheRiverStouratNaylandinSEBritain(51°56’83”Nand 1°17’88”E)inMarch2000.Theriverin this sectionconsistsoftwochannels,anartificial channel,which wasdugforflood preventionandtakesthe mainwaterflowawayfrom thesettlementatNayland,andtheoriginalriver channelwhereflowiscontrolled byaweir. Inthiscutoffsectionflow velocitieswereextremelylow(<0,05ms'),andwithinthemacrophyte stands, wherethe samplesweretaken velocities werebelow thedetectable range ofthe flow meter.Each samplewastakenfrom anareaof0.5m2ofvegetation.Samplesweresortedforpenultimateandfinalinstar Zygopteralarvae immediatelyuponreturntothelaboratory,identifiedandcounted. CHOICECHAMBER EXPERIMENTS. — Choice chamber experimentswerecarriedouttocompli- mentfield observations onmicrohabitat preferencesoftwo ofthespecies foundin theriver, Calopteryx splendensandErythrommanajas.Thesewerechosenastheyareweed-dwelling,occurredinrelativelyhigh numbersintheRiverStour and co-existedatthe sampledsite.Their comparativelylargesizealsoallowed easierobservation. Threesix-sidedchambers(height=29cm,basearea=412cm2)weredividedintofourequalsections,each containingonlyonespecies ofaquaticvegetation.Phragmitesaustralis, Glyceriamaxima,Rorippanastur- rium-aquaticumandFontinalis sp. wereselectedastheyarefrequentlyencountered alonglowland rivers. Threeofthese speciesalsooccurredtogetherinthesampledriver sectionandarephysiognomicallyverydif- ferent fromeachother.Plantspecieswereassignedtochoice chambersections usingrandom numbersand individual specimenwerearrangedsoastocoversimilarareas.There werenophysicalbarriersseparating thesectionsandthefourplantspecieswereequallyaccessibletolarvaefromthecentreofthechamber.The bottomwascoveredwithgraveland neitherprey speciesnorexternaloxygen wasintroduced. Thechamber wasfilledtoapproximately75%ofitsvolume withtapwater. E.najasandC.splendensinparticulararegenerallyknowntopreferflowingwater.However,bothC.splend- ensandE.najaslarvaewerefoundto- getherinstagnant waterwithinmac- TableI rophytestandsatthisandanumberof Species,numberofindividuals andreplicatesusedineachexperi- otherfieldsitesalongtheRiverStour. mentaltreatment Itwastherefore considered adequate toutilise this experimentalsetupfor TTrreeaattmmeenntt EErryytthhrroommmmaa CCaalloopptteerryyxx GGaasstteerroosstteeuuss NNoo..ooff theresultstoreflectthefieldconditions NNoo.. nnaajjaass sspplleennddeennss aaccuulleeaattuuss rreepplliiccaatteess encounteredatthesestagnantriverine siteswithinplantstands.Aflowcham- 11 - 11-2_ 020 ber,whichisgenerallyconsideredtobe 22 -- 1155 - 55 moresuitabletomimicloticconditions 33 -- 3300 - 55 intheriverchannel,wasalsolesssuit- 44 11 -- -- 2200 abletoalloweasyobservation oflar- 55 1122 - - 55 valsettlementTheresultsaretherefore 66 2244 - -- 55 limitedtothedescribedfieldconditions 77 1122 1122 -- 55 andcannotbeusedtomakeinferences 88 1122 2244 -- 55 aboutfasterflowingriver sites. 99 1122 -- 11 55 30 T.A.Hofmann&C.F.Mason LarvaeofC. splendensandE. najaswerekeptinseparatetanks ongravelonly andfedonDaphniaand chironomid larvae.Atotalof243 C.splendensand176E.najas,penultimateandfinalinstar larvaeofcom- parablesizes,were available fortheexperiments.All had beentaken fromtheRiverStour. Allexperimentswerecarriedoutintheopen,atambienttemperatureand light.Thepositionofthechambers waschangedaftereachtreatmenttoaltertheincidenceoflight,whichmayaffectlarval settlementchoices. Nine differentcompetitivetreatments werecarriedout(Tab.I).Within eachtreatmentnewindividuals were usedforeachreplicate.Duetoinsufficientnumbers oflarvae,particularlyofE. najas,individuals werere- usedin differenttreatments. Larvaewereintroduced intothechamberbyplacingthemontothegravelinthemiddlesection.Theposi- tion ofeachindividual wasnotedoneitherofthefourplantspeciesorgravelafteraperiodof1hourintreat- ments 1 and4,and24hoursinallothertreatments.Thelongertimeperiodallowedcompetitiveinteractions todevelopandaffectlarvaldistributionsbeforetheirpositionwasrecorded.Thefinaltreatmentincludedthe presence ofapredator,athree-spinedstickleback, Gasterosteusaculeatus. DATAANALYSIS. The microdistribution oflarvae,asestablishedbythefield survey,was compared usingax 2contingencytable,aswell asKruskal-Wallis singlefactoranalysisofvariancebyrank,appropri- ateforsmallsamplesizes(ZAR, 1999). Within-treatmentchoicechamber resultswereanalysedusingx2andFriedman’sanalysisofvarianceby ranks. Corrections werecomputedfortiedranks (ZAR, 1999).Differenttreatmentswere comparedusing x2 contingencytables.Replicateswerepooledwhereappropriatefollowinganalysis ofheterogeneity. RESULTS FIELDSURVEY ThelarvaeofC.splendens, I.elegansandE. najashadsignificantly differentmicrodis- tributionswithrespecttothethreeaquatic macrophytes sampled(x2=36.43,d.f.=4,p< 0.0u I.elegans wasfoundingreatestnumbersonG. maxima,withfewonP.australis (Fig. 1).Comparingrankeddensities,thedifferenceissignificant (Kruskal-Wallistest,H =8.171,d.f.=3,p< 0.05).E. najas wasfoundinequal abundanceonP.australisand G. maxima,butnumbers were significantly lower onR. nasturtium-aquati- cum (H =7.765,d.f.=3, p < 0.05). Platycnemis pennipes occurred main- ly onG. maximaandwas notfoundonR. nasturti- um-aquaticumorP.aus- tralis (H = 8.518, d.f. = 3, p < 0.05). No prefer- ence couldbe detected Fig.1.Mediannumber(nr2)ofCalopteryxsplendens,Ischnuraelegans, in the distributionofC. Erythrommanajas andPlatycnemispennipeslarvae on three aquatic splendens. macrophytes(n=5). Zygopteralarvaeinalowlandriver 31 CHOICECHAMBEREXPERIMENTS Inexperiments withspecies testedindividually, thedistributionofC. splendens and E. najas differedsignificantly betweenthefivesubstratumtypes atalllarvaldensities, withtheexceptionofonetreatment(E. najas at24individuals)(Fig. 2). C. splendens showedapreferenceforFontinalisinallexperimentaltreatments. Fifty percentofindividualswereonaveragefoundonthemoss atlowlarvaldensities(Fig. 2a).This figure decreasedto 31%athigh densities,whilstproportions on R.nasturti- um-aquaticum andP.australisincreasedfrom7%to21%andfrom1%to 13%respec- tively. Larval densityhadasignificant effectonthe microdistributionofC. splendens individuals(x2 = 18.04,d.f.=4,p <0.01). In contrast, thehighest mean percentageofE. najas was foundonP. australis at all abundance levels (40% at low density) (Fig. 2b). With increasing density, a greater proportion of larvae was foundonR. nasturtium- -aquaticum (increase from 8% to 11%) and particular- ly G. maxima(increasefrom 2%to22%).Again theeffect was significant (x2 = 13.76, d.f. = 4, p < 0.01). In both species arise in density led toamoreevenspreadofindi- vidualsoverthefivesubstra- tum types.At low densities the distributionsof the two species differedsignificantly fromeachother(x2=43.70, d.f.=4,p< 0.01). Neitherofthetwocompeti- tivelevels(5or12individual ofC.splendens) hadaneffect onthedistributionofE.najas compared tothecontrol(Fig. 3).Highestmeanproportions werefoundonP.australisin Fig.2.Proportionatemicrodistribution(%)of(a)Calopteryxsplend- allthreetreatments. ensand(b)Erythrommanajaslarvaeonfivesubstratumtypesatthree Inthe presence ofG. ac- eoxnpeeinridmiveidnutaallde(nns=iti2e0s),,cmhoeiacennauftmerboenre(±hSouDr)foafrteexrp2e4rhimouernstsfroarnblwoicthk uleatus at the same larval experiments(n=5).Significancewastestedwithx2forfrequencies density (12 individuals) the and Friedmantestforblockexperiments (d.f.=4). 32 T.A.Hofmann&C.F. Mason mean proportion of E. najas occupying G. maximaand R. nasturtium-aquaticum in- creasedfrom2%to5%andfrom8%to23%respectively, whilstonly 5%oflarvaere- mainedongravel. DifferencesinthedistributionofE. najaswithand withoutpredator (control) weresignificant (x2= 11-63, d.f.=4,p<0.05). DISCUSSION MICRODISTRIBUTIONINTHEFIELD Theresultsofthefieldinvestigation indicatedthatthefourZygopteraspecies differed significantly fromeachotherindistribution,withrespecttothethreeaquaticplants sam- pled. Withtheexception ofC. splendens, each species occurredinsignificantly higher proportionsonsomeofthemacrophytespecies comparedtotheothers.I.elegansseemed toavoidP.australis,butwas foundonbothG. maximaandR. nasturtium-aquaticum. In contrast,E. najas wasrarely presentonR. nasturtium-aquaticum, occupying mainly P. australisandG. maxima.P.pennipes was absentfromR. nasturtium-aquaticum. Whilstthesespecies-specific differencesensuredacertaindegreeofspatialseparation, someoverlap wasapparentanddifferentzygopteransessentially coexistedinthesame microhabitat,e.g.allspecies werefoundonGlyceria maxima.Theobservedmicrodis- tributionmaybeexplained onthebasisofinnatepreferences forparticularplantspecies, modifiedbyintra-andinterspecific interactions.Theseverityandoutcomeofcompetition differsbetweenplants (SUHLING,1996),asperchavailabilitychanges inlinewithvar- yingleafandstructuralcomplexity, andalsobetweenOdonataspecies, dependentupon thesizeofthecompetitors. Competitiveinteractionsarereducedwhereperchavailabil- ityishigher(GRIBBIN &THOMPSON, 1990) and in more heteroge- neous microhabitats (complex-leaf versus simple leaf structures) (LOMBARDO, 1997). Innate species-specific preferences maybere- latedtosizedifferences betweenlarvalOdonata ofthesameinstar, mak- ing particular aquatic plants more suitable Fig.3.Proportionatedistribution {%,±SD) ofErythrommanajas(12indi- as perches thanothers. viduals, n=5)persubstratum type,whenkeptseparately(control),atlow Differentialselectionof levels (12individuals)andhighlevels(24individuals)ofcompetitionfor percheswithCalopteryxsplendensandinpresence ofapredator,Gasteros- perchesofdifferentdi- teusaculeatus (1 individual). ameter on the basis of Zygopteralarvaeinalowlandriver 33 certainbody dimensions(eye spacing) was demonstratedby ASKEW(1982)inadult Odonata.Ifasimilarprinciple applies tolarvae, itcouldexplain why thetwo small- estspecies (I. elegans andP.pennipes)wererare onP. australisstems, whichhave a comparatively greaterdiameter. Wherespecies coexist, e.g. onG. maxima,size differencesbetweenlarvaemay al- lownicheseparation onthebasis ofprey selection, afactoralsoevokedtobepartial- lyresponsible fortheseparation ofdifferentinstarsof thesame anddifferentspecies (CROWLEY& JOHNSON, 1982). Onacumulativebasis, mostZygopteralarvaewerefoundonG. maxima,leastonP. australis. Differencesinstructuralcomplexitybetweenplant species mayberesponsi- bleforlarvalpreferences. Phragmites hasarelatively simplestructure,offering limited perchspaceperplantinonly onedimension(verticalstems).Concealmentfrompreda- torsislimitedcompared tomacrophytes withmorecomplex leafstructures.G. maxima hasverticalandhorizontalstructuralcomponentsforlarvaetooccupy. Leavesarefairly simple(linear),butmayformdensefloating mats(PRESTON&CROFT, 1997),which increasesperchavailabilityperplantandeffectivenessasrefuge.R. nasturtium-aquati- cum is structurally themost complex of thethreemacrophytes. However, leavesare oval-shaped andmaybeless suitableforoccupancy by somelarvae,apossibility that requiresfurtherinvestigation. Selectionofmicrohabitatonthebasisofpredator avoid- ance hasbeenrepeatedly suggested (THOMPSON, 1987;CONVEY, 1988;PIERCE, 1988;JOHNSON,1991).Preferenceforcomplex leafhabitatsandparticularpartsofa plant hasbeenobserved(WELLBORN&ROBINSON, 1987;DIONNE etal., 1990, LOMBARDO, 1997)andgreaterpreyavailability inadditiontoconcealmentfrompre- dationhasbeenproposed aspossiblereason. CHOICE CHAMBEREXPERIMENTS In thefield, manyenvironmentalfactors may influencethe perch selectionby Zy- gopteralarvae, including watertemperature,competition andpredation. Theobserved microdistributionatany point intimeistheresultofthecombinedeffectofallofthese onlarvalcommunities(STERNBERG, 1994).Controlledlaboratory experiments can help toidentify ‘true’larval choicesand illustratehowthese maychange when other influencesareadded. Inexperiments carriedoutwithindividualspecies, itbecameapparentthatC.splend- ens larvaefavoured Fontinalismoss overanyofthemacrophytes andthatthisprefer- encepersisted as larvaldensitiesincreased. Unfortunately this couldnotbecompared tofieldresults, asFontinaliswas foundattoo lowaquantity tobesampled intheriver section.However,basedonfieldresultsfromanotherriver,ZAHNER(1959)proposed thatC.splendensavoidedFontinalisduetoitsdensegrowth.Thesedifferencesinobser- vationmaybeanindicationofhowperchchoiceismodifiedinthefield.Increasedflow velocity at someriverinesites mayrenderFontinalisunsuitableforlarvaloccupancy, as themosshas nosupporttissuetowithstandflow.Wherethereisnoflowas was the 34 T.A.Hofmann&C.F. Mason case atthesitesampled inthisstudy, Fontinaliscanofferastructurally heterogeneous habitat, enabling concealmentfrompredators andconspecifics. Aninnatepreference forthe mostcomplex perch substratum, offeringeffectiveconcealment,mayexist ir- respective ofthepresenceofapredator. Increasedlarvaldensitiesledtomorelarvaestartingto coloniseless preferredsubstrata, inordertolimitintraspecific interference,conformingwiththe‘idealfreedistribution’ modelofhabitatselection,whichstatesthatovercrowding reducesthesuitabilityofthe mostpreferred habitat,increasing thatofintermediatehabitatswheredensitiesrise ac- cordingly (FRETWELL, 1972).SimilarobservationsweremadebySUHLING (1996) regarding Onychogomphus uncatus larvae.Aggressive interactionsandperch defence behaviourareknowntooccurinZygopteralarvae(JOHNSON, 1991).Thismayimply thatcompetitively inferiorindividualsareforcedto occupy microhabitatsthatareless suitable(e.g. gravel)andmayconferfurtherdisadvantages (e.g. greatervulnerabilityto predation, limitedprey availability) (BEGON etal., 1996). Itappears thatlarvaldensi- ties inconjunction with intraspecific interferencecompetition affectthe microhabitat selectionofC. splendens larvae. ThemicrodistributionofE. najas differedsignificantly fromthatofC. splendens at lowlarvaldensities.E.najas larvaepreferentially occupiedPhragmites stems,butwere alsofoundathigh proportionsonFontinalisandgravel. Incontrasttofieldobservations, E. najas larvaeavoidedG. maximainthechoicechamber. Thedecisioncriteria withrespect toperch selectionmay vary between species, de- pendent on ecological differences, e.g. differentiallevel ofintraspecific interference (includingcannibalism).Also,subjecttolife style (e.g. active versuspassive hunting), microhabitatselection maybeevolutionary fixedorflexible(PIERCE, 1988). SimilartoC. splendens, microdistributionofE. najas changed as larvaldensitiesin- creased, with larvaemore evenly spread over allsubstratum types.Atthe sametime the degreeofspatial overlapbetweenthetwo species increased, sothatthedifferences becamenon-significant. Thismaybe amorerealistic representationofthefieldsitua- tion, wheredensitiesare higher. ThemicrodistributionofE.najaschanged significantly inthepresenceofapredator. Themainobservationswereadecreaseinproportional occupancyofgravelandPhrag- mitesandanincreaseinrelativeabundanceoflarvaeonFontinalisandRorippa. Complex macrophytes thatoffersuitablerefuges werethereforeincreasingly selected,assuggested byLOMBARDO (1997).High-riskhabitats,suchasgravel,werelargelyavoided.Perch selectioninE. najas was thereforeflexibletosuitachanging environment. Itmaybesurprising, inthefirst instance, thattheintroductionofC.splendens larvae didnot haveasignificant effectonE. najas microdistributionin thecompetition ex- periments.Theresults discussedabovesuggestthatthetwospecies avoidintensecom- petition by limiting spatial nicheoverlapatlowintraspecific larvaldensities.Whenin- traspecificcompetitionislow,innateperchselection preferences,e.g.based onphysical characteristicsofthelarvae, may bemoreeasily realised. Inconclusion, intraspecificcompetitionappearstobemoreimportantthaninterspecific Zygopteralarvaeinalowlandriver 35 competitionwithotherZygopteraindetermining themicrodistributionofC. splendens andE. najas inmarginalmacrophytestandswithdiminishedflow.Thespecies showed differentpreferences withrespect toperch substratum.However, dependenton larval densities,spatial separation was limited, as intraspecific interferencecausedindividu- als toincreasingly occupy less preferredsubstrata.The nichesofthetwo species may bemoreadequately separated onthebasis ofprey selectionor hunting behaviour.C. splendens individualsofthesameinstarare onaveragelargerthanE. najas larvaeand may consumelargerprey.E. najasalsouse amoreactive huntingmethod,whereasC. splendens areessentially sit-and-waitpredatorsandare moreactiveat night(BROOKS, 1999). E. najasalsoactively reactedtothepresenceofapredator, indicating flexibility ofresponseregarding perch selection. REFERENCES ASKEW,R.R., 1982.Roostingandrestingsiteselection bycoenagrioniddamselflies.Adv.Odonatol. 1:1-8. BEGON, M.,J.L.HARPER&C.R.TOWNSEND, 1996.Ecology:individuals, populationsandcommuni- ties,[3,<l edn],Blackwell Science,London. BENKE,A.C.,P.H.CROWLEY& D.M.JOHNSON,1982.Interactions amongcoexistinglarval Odonata: anin-situexperimentusingsmallenclosures. Hydrobiologia94: 121-130, BROOKS,S.,1999.FieldguidetothedragonfliesanddamselfliesofGreatBritainandIreland.Br.Wildlife Publishing,Rotherwick. CASTELLA,E.,1987. LarvalOdonatadistributionasadescriberoffluvialecosystems:theRhoneandAin Rivers,France. Adv.Odonatol. 3:23-40. CONVEY,R, 1988.Competitionforperchesbetweenlarval damselflies: theinfluence ofperchuseonfeed- ingefficiency,growthrateandpredatoravoidance.Freshw. Biol. 19:15-28. CROWLEY,RH.& D.M. JOHNSON,1982.Habitatandseasonalityasnicheaxesinanodonatecommu- nity.Ecology63(4): 1064-1077. CROWLEY,P.H.,P.M.DILLON,D.M.JOHNSON&C.N.WATSON,1987.Intraspecificinterferenceamong larvaeinasemivoltinedragonflyspecies. Oecologia11:447-456. DIONNE,M.,M.BUTLER&C.FOLT,1990.Plant-specificexpressionofantipredatorbehaviourbylarval damselflies. Oecologia83; 371-377. FRETWELL,S.D.,1972.Populationsinaseasonal environment.PrincetonUniv. Press.,Princeton. GRIBBIN,S.D.&D.J.THOMPSON,1990.Asymmetricintraspecificcompetitionamonglarvaeofthedam- selfly Ischnuraelegans(Zygoptera:Coenagrionidae).Ecol. Em. 15:37-42. JEFFRIES,M,1990.Interspecificdifferencesinmovementandhuntingsuccessindamselflylarvae(Zygop- teradnsecta):responses topreyavailabilityandpredationthreat.Freshw.Biol.23: 191-196. JOHANNSSON,O.E., 1978.Co-existence oflarval Zygoptera(Odonata)commontothe NorfolkBroads (UK), 1.Temporalandspatialseparation.Oecologia32:303-321. JOHNSON, D.M., 1991. Behaviouralecology oflarval dragonfliesand damselflies. Trends. Ecol. Evol. 6(1): 8-13. JOHNSON, D.M.,P.H.CROWLEY,R.E.BOHANAN,C.N.WATSON&T.H. MARTIN, 1985.Competi- tionamonglarval dragonflies:afieldenclosureexperiment.Ecology66(1):119-128. LOMBARDO,R, 1997.Predationby Enallagmanymphs(Odonata,Zygoptera)underdifferentconditions ofspatialheterogeneity.Hydrobiologia356: 1-9. MERRILL,R.J.&D.M. JOHNSON, 1984.Dietarynicheoverlapandmutualpredationamongcoexisting larval Anisoptera.Odonatologica13(3):387406. PIERCE,C.L., 1988.Predatoravoidance,microhabitatshiftandrisksensitiveforaginginlarval dragonflies. Oecologia77:81-90. 36 T.A.Hofmann&C.F.Mason PIERCE,C.L.,P.CROWLEY& D.M.JOHNSON, 1985. Behaviour andecologicalinteractions oflarval Odonata. Ecology66(5): 1504-1512, PRESTON,C.D.& J.M.CROFT, 1997.AquaticplantsinBritainandIreland. HarleyBooks,Colchester. STERNBERG, K., 1994.Nichespecialisationindragonflies.Adv. Odonalol.6: 177-198. SUHLING,F., 1996.Interspecificcompetitionandhabitat selectionbytheriverine dragonflyOnychogom- phusuncatus.Freshw. Biol. 35: 209-217. WELLBORN,G.A.&J.V.ROBINSON,1987.Microhabitatselectionasanantipredatorstrategyintheaquatic insectPachydiplaxlongipennis(Odonata;Libellulidae).Oecologia71: 185-189. ZAHNER,R 1959.UberdieBindungdermitteleuropaischenCalopteryxArten(Odonata:Zygoptera)an denLebensraumdesstromendenWassers, 1.DerAntedderLarvenanderBiotopbindung.Ini.Revue ges.Hydrobiol.44:51-130. ZAR,J.H., 1999.Biostatisticalanalysis,[4*edn],PrenticeHallInternational,London.