remote sensing Article Comparison of Two Independent Mapping Exercises in the Primeiras and Segundas Archipelago, Mozambique LuisaTeixeira1,*,JohnHedley2,AurélieShapiro3andKathrynBarker4 Received:16September2015;Accepted:29December2015;Published:12January2016 AcademicEditors:StuartPhinn,ChrisRoelfsema,XiaofengLiandPrasadS.Thenkabail 1 DepartmentofPhysicalGeographyandEcosystemScience,LundUniversity,S-22362Lund,Sweden 2 EnvironmentalComputerScienceLtd.,RaymondPennyHouse,HammettSquare,Tiverton, DevonEX166LR,UK;[email protected] 3 ConservationRemoteSensingCentre,BiodiversityUnit,WWF-Germany,10117Berlin,Germany; [email protected] 4 ARGANSLtd.,PlymouthSciencePark,Plymouth,DevonPL68BY,UK;[email protected] * Correspondence:[email protected] Abstract: Productionofcoralreefhabitatmapsfromhighspatialresolutionmultispectralimageryis commonpracticeandbenefitsfromstandardizedaccuracyassessmentmethodsandmanyinformative studies on the merits of different processing algorithms. However, few studies consider the full productionworkflow,includingfactorssuchasoperatorinfluence,visualinterpretationanda-priori knowledge.Anend-usermightjustifiablyask:Giventhesameimageryandfielddata,howconsistent wouldtwoindependentproductioneffortsbe? Thispaperisapost-studyanalysisofaprojectin which two teams of researchers independently produced maps of six coral reef systems of the archipelagoofthePrimeirasandSegundasEnvironmentalProtectedArea(PSEPA),Mozambique. Bothteamsusedthesameimageryandfielddata,butapplieddifferentapproaches—pixelbased vs. objectbasedimageanalysis—andusedindependentlydevelopedclassificationschemes. The resultsofferauniqueperspectiveonthemapproductionprocess. Botheffortsresultedinsimilar mergedclassesaccuracies,averagingat63%and64%,butthemapsweredistinctintermsofscale of spatial patterns, classification disparities, and in other aspects where the mapping process is reliant on visual interpretation. Despite the difficulty in aligning the classification schemes clear patternsofcorrespondenceanddiscrepancywereidentified.Themapswereconsistentwithrespectto geomorphologicallevelmapping(17outof30pairedcomparisonsatmorethan75%agreement),and alsoagreedintheextentofcoralcontainingareaswithinadifferenceof16%acrossthearchipelago. However,moredetailedbenthichabitatlevelclasseswereinconsistent. Mappingofdeepbenthic coverwasthemostsubjectiveresultanddependentonoperatorvisualinterpretation,yetthiswas one of the results of highest interest for the PSEPA management since it revealed a continuity of benthosbetweentheislandsandtheimpressionofaproto-barrierreef. Keywords: OBIA; pixel based; very high resolution; benthic habitat; image interpretation; operatorsubjectivity 1. Introduction Coralreefmappingfromremotelysensedimagesisnowawell-establishedpractice,asattested bythemanypublishedpaperssincetheearly1990s[1],books[2,3]andavailabilityoflargesatellite imageryarchives,andcommercialimageserviceproviders. Remotesensingmethodshavesuperseded visualinterpretationandmanualdelineationofaerialphotography[4–6],andwiththedevelopment RemoteSens.2016,8,52;doi:10.3390/rs8010052 www.mdpi.com/journal/remotesensing RemoteSens.2016,8,52 2of20 ofhighspatialresolutionmultispectralsatellitesensors(pixels<5m)thespacedatanowapproach theresolutionofaerialphotography. Thedigitalformatofsatellitedatafacilitatescomputeranalysis, andavarietyofalgorithmsforproducinghabitatmapshavebeendescribed, frombasicper-pixel classification[7–10]toobjectbasedimageanalyses(OBIA)[11–14].However,regardlessofthemapping algorithmused,therearemanyaspectsofmapproductioninwhichoperatordecisionsstillaffectthe outcome: (1)choiceofalgorithmandparameterization;(2)choiceofclassificationscheme;(3)visual quality checking and reprocessing; and (4) final corrections of misclassifications, i.e., contextual editing[15]. Inparticular,inthemapproductionprocessthefirstanalysisisrarelyaccepted;typically a cycle of visual assessment, adjustment and reprocessing occurs. When a map is produced for anend-user,manualcorrectionof“obvious”misclassificationsisobligatory,andthemappingprocess effectivelybecomesbasedonvisualinterpretation. Whiletheliteraturecontainsmanycomparisons ofdifferentclassificationmethods[7,8,16,17],invariablytheseareconductedbythesameindividuals orinaworking-groupinteraction,whereoperatorsubjectivitiesareminimizedbecausetheaimisto assessthealgorithms. However,thisdoesnotaddresstheend-usersquestion: generally,howreliable andconsistentismapproduction? Theconsiderationofoperatorsubjectivityinmappingqualityisrarelydiscussedinremotesensing literature. Andréfouët[18]addressesthecomplexityinevaluatingthehumaninfluenceinthemap productionprocess,andparticularlyoftheonesusuallyreferredtoas“experts”. Onereasonforthe lackofinformationonoperatorsubjectivityisthatananalysisrequirestwoindependentmapping exercisesonthesamesite,ideallyfromthesameimageryandwiththesamefielddata,andthisis rarelyfeasible. Inthispaperwehavetakenadvantageofsuchasituationthatarosefromacooperation betweenEuropeanSpaceAgency’s(ESA)G-ECO-MONprojecttoevaluatetheuseofremotesensing forecosystemservices,theWorldWideFundforNature(WWF),andLundUniversity,Sweden. The resultingproductsweretwosetsofbenthichabitatmapsforsixoftheislandsinthePrimeirasand Segundas Environmental Protected Area (PSEPA) in Mozambique: one produced by pixel based classificationmethodology,theotherfollowinganOBIAapproach. Thesatelliteimageryandfield data were the same for both analyses and the habitat maps showed similar accuracies according to their respective methodologies in comparison to field data. However, in addition to utilizing differentalgorithms,thecompletelyindependentmapproductioncompriseddifferentclassification schemes,differentinterpretationofthefielddata,anddifferentvisualqualityassuranceprocesses andcontextualediting. Theresultshavenotgonethroughanypost-comparisonrevision. Thesemaps arethereforeanexampleofthepossiblevariationfromtwospecificprovidersonthesamemapping task,andgiveanindicationofboththedifferencesandconsistenciesbetweentwowhollyindependent productionchains. 2. StudyArea The Primeiras and Segundas Environmental Protected Area (PSEPA) is located in northern Mozambique,extendingover200kmofcoastline,fromPebanetoAngoche. Theareawasdeclared protected in late 2012, and includes mangroves, seagrass beds and diverse coral reef habitats that supportabiodiversityrichecosystem[19].Ofthetwoarchipelagos,distributedparalleltothecoastline, onlythenorthern,Segundas,wasincludedinthiswork. Thearchipelagoconsistsofsevenislands,but thesouthern-most,Moma,wasexcludedfromthestudyasfielddatawerenotcollected(Figure1). The islands are quite small, with a maximum length of about 1 km. The smaller islands support little or no vegetation while the larger islands have some forested area. Each island is surroundedbyfringingreefsinasemi-circleshapetothesoutheast,wheremassivecoralcolonies occur sporadically [20]. The lagoons, made of sand, coral rubble and seagrass beds, are shallow andsomepartsarepracticallyexposedduringlowtide[20,21]. Theislandshaverelativelyexposed northern,easternandsouthernsides,thelatterbeingusuallysubjecttomonsooninfluencedtrade windsheadingnortheastduringthesummerorwetseason(OctobertoMarch)andsouthwestinwinter ordryseason(ApriltoSeptember)[22,23]. Ingeneral,themostdevelopedandspeciesdiversereefs RemoteSens.2016,8,52 3of20 havebeenreportedinthemostshelteredregionsofthecoralreefsystems,i.e.,facingthemainland[20]. RTehmeotel o20c1a6l, w8, a52te rsareturbulent,notonlyduetoupwellingbutalsotopredominanttidalwave3s oaf n2d0 irregularseafloorbathymetry,resultinginstrongandquitevariablecurrents. Themaindirectionof bathymetry, resulting in strong and quite variable currents. The main direction of the offshore surface theoffshoresurfacecurrentsissoutheast, whilecurrentsatdepth(100–150meters)movetowards currents is southeast, while currents at depth (100–150 meters) move towards north [23]. north[23]. FFiigguurree 11.. LLooccaattiioonnaall mmaapp ooff tthhee ssttuuddyy aarreeaa.. 3. Material and Methods 3. MaterialandMethods 33..11.. SSaatteelllliittee IImmaaggeerryy DDaattaa AA mmiixxttuurree ooff 44--bbaanndd WWoorrllddVViieeww22 ((rreedd,, bblluuee,, ggrreeeenn,, aanndd nneeaarr--IIRR)) aanndd QQuuiicckkBBiirrdd aarrcchhiivvee iimmaaggeerryy wweerree uusseedd ffoorr mmaappppiinngg.. TThhee sscceenneess, ,oonnee ppeerr iissllaanndd, ,wweerree sseelleecctteedd aaccccoorrddiinngg ttoo tthhee bbeesstt aavvaaiillaabbllee vviissiibbiilliittyy ddeeffiinneedd bbyy rreedduucceedd eexxtteenntt ooff wwhhiitteeccaappss aanndd ssuunn gglliinntt,, vviissiibbllee ddeeeepp bbeenntthhiicc ffeeaattuurreess,, aanndd ggeenneerraallllyy cclleeaarr wwaatteerrss ((TTaabbllee 11)).. DDuuee ttoo ffrreeqquueenntt rroouugghh sseeaass aanndd tteerrrriiggeennoouuss pplluummeess,, cclleeaarr iimmaaggeerryy ooccccuurrss iinnffrreeqquueennttllyy,, aanndd tthhee bbiiggggeesstt ttiimmee ddiissccrreeppaannccyy bbeettwweeeenn iimmaaggeerryy aanndd tthhee iinn--ssiittuu ddaattaa ccoolllleeccttiioonn wwaass fofouurr yeyaerasr.s A. ltAhlothuoguhg ith isi tliiksellyik tehlayt tthhaet btehnethboesn hthaso sunhdaesrguonndee rsgoomnee cshoamngeecsh daunrginegs tdhuisr ipnegritohdi,s tpheer siotrdu,ctthueraslt rcuocmtuproanlecnotms poof ntheen tssysotfetmhe, is.ey.,s tceomra,li a.en.,dc ororackla, snhdoruolcdk b,esh faoiurlldy cboenfsaiisrtleynct.o Tnhsies tiemnat.gTerhye uimndaegrewryenutn dsetarwndeanrtds tarnaddiaormderatrdicio manedtr icseannsdors ecnosrorreccotirornec tuiosninugs icnaglicbarlaibtiroanti ocnoecfofeicffiiecnietsn tsfrformom tthhee pprroovviiddeerr [[2244]].. TTaabbllee 11.. SeSnesnosro, ra,caqcuqisuiitsioitnio dnatdea taenda ntdimtei maneda vnidsibviilsiitbyi laistysesassmseesnsmt feonr tthfoer imthaegeimrya cgoevryericnogv eeraicnhg leoaccahtiolonc.a tion. Acquisition Acquisition No No Sun Deep Areas Clear Locations Sensor Acquisition Acquisition No NoSun DeepAreas Clear Locations Sensor Date Time Whitecaps Glint Visible Waters Date Time Whitecaps Glint Visible Waters 1 Baixo Santo Antonio WV-2 07.12.2009 07:36:08 X X 1 BaixoSantoAntonio WV-2 07.12.2009 07:36:08 X X 2 Mafamede WV-2 18.12.2009 07:34:16 X 2 Mafamede WV-2 18.12.2009 07:34:16 X 3 3 PPuuggaa PPuuggaa QQBB2 2 1111..0055..22001100 0077::3311::0055 XX 4 4 BBaaiixxoo MMiigguueell QQBB2 2 1111..0055..22001100 0077::3311::0055 XX 5 5 NNjojovvoo WWVV--22 0099..0011..22001100 0077::3322::5599 XX XX 6 Caldeira WV-2 29.12.2009 07:34:14 X X X 6 Caldeira WV-2 29.12.2009 07:34:14 X X X 3.2. Benthic Cover Data In-situ point data covering the six coral reef systems were collected by the Lund University group in two surveys, one from 15 to 17 April 2014 on the islands Mafamede, PugaPuga, Baixo Miguel and Njovo, and the second on 10 and 11 May 2014 on the islands Caldeira and Baixo Santo Antonio. RemoteSens.2016,8,52 4of20 3.2. BenthicCoverData In-situ point data covering the six coral reef systems were collected by the Lund University group in two surveys, one from 15 to 17 April 2014 on the islands Mafamede, PugaPuga, Baixo MiguelandNjovo,andthesecondon10and11May2014ontheislandsCaldeiraandBaixoSanto Antonio. Themethodsbywhichfielddatacanbecollectedinthisregionareaffectedbytidaland waterclarityvariationaswellasweatherconditions. Benthiccoverwasobservedfromtheboatusing aclearbottombucket: aqualitativedescriptionofthesubstrateandvisiblefeatureswererecorded, verysimilartotheresultingOBIAlevel3classes. Underwaterphotographsweretakenatselected locations to illustrate different benthic cover types. Geographical coordinates were captured with aGarminMontana650tGPS(horizontalaccuracy˘3.65m)[25]. Datapointsweretakenfromaslow movingboatatintervalsofabout80–150meters(asdefinedbytheGPSreceiver),butalsoaccording toobservablechangesofthebenthiccover. Althoughinitiallyplannedastransects,therouteshad tobeadjustedtothetidalandgeomorphologiccharacteristicsoftheislandsforsafetyreasons. Data werecollectedbycircumnavigatingthereefcrest,definingsometransectsinthelagoonandbyvisiting zonesofinterestpreviouslydefinedaccordingtothesatelliteimagery. Thepointcountwasintended to be approximately 200 points per island. However, due to bad weather and unsafe navigable conditions, thefinaldatasetvariedfrom24to139pointsperisland, totalingabout660geolocated pointsdocumentingbenthiccover(Table2). Amoredetaileddescriptionofthesamplingmethodology isgiveninTeixeiraetal.[26]. Table2.Fielddatadistributionperlocation. Location GeolocatedPointsSampleSize BaixoSanto 101 Antonio Mafamede 176 PugaPuga 103 Njovo 127 BaixoMiguel 29 Caldeira 130 3.3. MappingMethodologies Thetwomapproductioneffortsconsistedofaper-pixelclassificationapproachconductedunder theG-ECO-MONproject,henceforthdenotedGEM,andanOBIAconductedbytheLundUniversity group,denotedLund.Theresultsofbothapproachesincludedrasterclassificationmapswithper-pixel correspondencetothesourceimages,aftertheconversionoftheLundpolygondata. Assuch,the resultswerecomparedper-pixel. Theclassificationschemesusedweredifferent,aswerethemethods foraccuracyassessmentwithfielddata,detailedinthefollowingsections. 3.3.1. GEMProductionEffortProcessingandClassification First,theimagesforNjovoandBaixoSantoAntoniowerecorrectedforwatersurfacesun-glint usingthenearinfra-red(NIR)band[27],whiletheotherimageswereconsideredsufficientlyfreeof glintthatcorrectionwasnotrequired. Thepurposeoftheglintcorrectionistoremovewavesurface patternsthatwouldotherwisedominatetheclassification,resultinginspectralreflectancesvalues closertohowtheywouldbeiftheglintwasabsent,andthereforemoreinlinetothoseoftheother images. Howeverthecorrectionisnotperfectandresidualnoisemayremain[28]. Imageswerethen subjecttoaspatialfilteringstepwhereadjacentpixelsofsimilarreflectancewerereplacedbytheir meanspectra,thenappliediterativelyuntilthenumberofdistinctpixelswasreducedto10%. The spatialscaleofthemergingwasverysmall(typically3ˆ3pixels)andthisstepwasappliedtoreduce singlepixelscalenoiseintheclassification. Followingtherecommendedpracticeofinitiallyclassifying RemoteSens.2016,8,52 5of20 to at least twice the number of required classes, 60-class unsupervised k-means classification was applied. The resultant codes were ascribed to a reduced classification scheme (Table 3) by visual interpretationusinghistoricalspatiallyapproximateRapidAssessmentdocumentsandgeneralized field data. Classification was then validated using the actual contemporary geolocated field data. There were insufficient field data points to partition the data into training and validation sets, so all of the field data were reserved for accuracy assessment. Use of visual interpretation and local knowledgefortrainingdataisnotonlysometimesapracticalnecessity[29]orinherentlyuseful[30] butitisalsoinevitable: nomapproducerwoulddiscountwhattheyknowwhenqualitychecking theirclassificationresults. Hence,operatora-prioriknowledgeisalwaysrelevanttomapproduction andrarelyindependentfromthedatausedforaccuracyassessment. Withthisinminditisimportant tonotewhatbackgroundinformationinformedtheclassattributions: nomemberoftheGEMgroup hadvisitedthesitebutseveralRapidAssessmentdocumentswereavailablefrom1997to2010that describedthebenthiccompositioninroughlydefinedareas[21,31,32];thein-situdatalaterusedfor accuracyassessmentwasalsoavailablebutthiswasonlyreferencedinroughgeographicalterms,i.e., tounderstandthenatureofthebenthiccompositioninsideversusoutsidethelagoonsandtodefinethe classificationscheme. Table3.HabitatclassificationschemeappliedintheGEMmappingproductioneffort. Code Name Description 0 Unprocessed Nodata,pixelunprocessedorinvalid. 1 Land Abovewaterattimeofimageacquisition. 2 Deepwater Bottomcan’tbeseeninimage. 3 Deepsand Sandwherebottomisonlyjustvisible,typicallymorethan10mdepth. Relativelycleansandcover,approximatelylessthan10mdepth, 4 Shallowsand maycontainsomerubbleandverythinvegetation. Sandwith Sandorrubblewithsomeseagrassand/ormacroalgaecover 5 thinvegetation butnotsufficienttoobscurethevisibilityofthesandsubstrate. 6 Densevegetation Densecoverofseagrassormacroalgaesufficienttoobscurethesubstratebelow. Habitatthatcontainscoralinarelatively Reefflat/coral 7 shelteredenvironment,typicallybehindthereefcrestand andrubblefield attheedgeofthelagoon.Canalsobespurandgroovezone. Reefcrest/high Placeswherecoralisfoundinhighestdensity,typically 8 coralcover attheedgeofthereefandtopofthereefslope. Reefslope/ Highcoralcoverregionthatslopesuptothereefcrestfromoutsidethelagoon, 9 forereef maycontainsoftcorals.Spurandgrooveformationsalsofoundhere. Darkbenthosbarelyvisibleinimagery,atdepths10to20m, Deepbenthic 10 theexactnatureofwhichcannotbedetermined.Couldbe cover vegetation(seagrassesormacroalgae)ordeepreefstructures. Wavesorclouds Regionswherethebenthoscannotbeclassifiedbecause 11 intheimage breakingwavesorcloudsobscureitinthesourceimage. Sandon Correspondstoareasclassedassandinthein-situdatabuttheyaretypically 12 rocksubstrate raised,probablyonconsolidatedrubble,andwiththinvegetation. Nodepthcorrectionordepth-invariantindexcalculation[33,34]wasapplied. Giventhatthesites wereinlargepartarelativelyflatshallowlagoon,withtheonlydepthvariationontheforereefslope, itwasjudgedthatmergingofthe60classeswouldbeadequatetohandletheexistenceofdifferent classesduetodepth. Finally,contextualeditingwasusedtocorrectmisclassificationsasjudgedby visualinterpretation. Theclassesusedwerechosenbyconsideringthestructureofthefielddata,andthedelineations thatarosenaturallyfromunsupervisedclassificationoftheimagery.Theclassesweredefinedathabitat RemoteSens.2016,8,52 6of20 levelandincludebothbioticcompositionandgeomorphologicalzone. Inmultispectralimageryof fourbands(red,green,blue,andnearinfra-red),onlytwoorthreeconveysubsurfaceinformation,soit isgenerallynotpossibletodifferentiatebetweenseagrassandmacroalgaebyspectralreflectancealone; infact,thefielddataindicatedthatseagrassandmacroalgaeoftenoccurredtogether. Thereforethe classificationschemeincludedclassesbasedongeneral“vegetation”whichcouldbeeitherseagrassor macroalgae. Typicallya-prioricontextualknowledgebyusersisrequiredtoidentifyareaswhichare dominatedbyseagrass. Mosthabitatswereonacontinuumwhereclasses“sand”,“sandwiththin vegetation”and“densevegetation”werenotpreciselydefinableintermsofpercentagecoverbutarose duetospectralgradationofimagepixels. Nospecificlevelofcoralcoverisimpliedintheclasses“reef slope”,“reefcrest”and“reefflat”,butthesecanbeconsideredplaceswherelivecoralwouldbefound. 3.3.2. GEMProductionEffortAccuracyAssessment Duetothedifficultlyinclearlydelineatingclasseswheremixedassemblagesarecommon(both intheimageryclassificationandin-situdata)accuracyassessmentwasconductedbymergingclasses to three basic cover types: dominated by coral, sand and vegetation (seagrass or algae). This was also necessary because the in-situ data contained only small number of instances of some classes, andevenwiththismerging,the“vegetation”classwasabsentinthein-situdataatthreeofthesix islands. Confusionmatricesforthesethreeclasses(andincluding“deepwater”forthemapdata)were constructedforthesixislands. 3.3.3. LundProductionEffortProcessingandClassification Thefirstpre-processingstepappliedintheOBIAwastomaximizethevisualcontrastoftheimages byacombinationofradiometriccorrection,principalcomponentanalysis,darkobjectsubtraction,sun glintcorrectionaccordingtoHedleyetal.[27]andwatercolumncorrectionaccordingtoLyzenga[33,34]. The imagery was iteratively segmented and classified according to a three level hierarchical classificationschemebasedonshallowwatercoralreefenvironmentresearchworkbyMumbyand Harborne[35],Rohmann[36]andAndréfouët[37]. Theclassificationscheme(Table4)wasadaptedto thefielddataandimagerysoastomaximizethevarietyofbenthichabitatsincluded.Segmentationwas performedusingTrimbleeCognitionDeveloper’smultiresolutionsegmentationalgorithm,applying adecreasingscaleparameter(100to5),whilecompactnessandcolorwerekeptalmostconstant(0.7to 0.9). Duetothevariationwithintheimages,theparameterswereadjustedtotheindividualdatasets. ClassificationwasperformedusingtheNearestNeighborclassificationalgorithm,includingFeature Optimization tools. Training datasets were created by the operator based on image interpretation informedbythefielddata,togetherwithempiricalknowledgeofthecoralreefsystems.TheLundteam hadphysicallyvisitedthesiteandcollectedthein-situdata,butinattempttopromoteindependence fromthein-situdatasets,thetrainingsiteswereselectedfromareasnotcoveredbythefielddata. Mapswerecreatedforeachlevelofthehierarchicalclassification,resultinginthreemapsper reefsystem. Finally,contextualeditingwasappliedtocorrectmisclassificationsaccordingtovisual interpretation. FurtherinformationontheimageprocessingcanbefoundinTeixeiraetal.[26]. 3.3.4. LundProductionEffortAccuracyAssessment Confusion matrices were generated for the resulting bottom cover and benthic habitat maps (levels2and3)usingthefielddatapoints. Allclassespresentinthemapwereincludedintheaccuracy assessment,despiteinsufficientdistributionofpointdataacrossclasses. RemoteSens.2016,8,52 7of20 Table 4. Three level hierarchical habitat classification scheme applied in the Lund mapping productioneffort. Level1 Level2 Level3 GeomorphologicalZone BottomCover BenthicHabitat Land Land Land Shallowwaters Sand Sand Lagoon/Reefcrest/Forereef Sand/Rubble Sand/Rubble withSeagrass withSeagrassandRocks withSeagrassandRockswithBrownMacroalgae withRocks withRockswithBrownMacroalgae Rock Rock withBrownMacroalgae withSandandRubble withBrownMacroalgaeandSandandRubble Coral Coral SpurandGroove Field Patches Deep(fore)reef Sand Sand Deepbenthiccover Deepbenthiccover Deepwater Deepwater Deepwater Noinformation Noinformation Noinformation 3.4. MappingResultsComparison Since there was no previous intention of conducting a comparative study, the classification schemes were developed independently, which led to relatively few classes having a direct 1:1 correspondencebetweenthetwomapproductioneffortsandclassgroupingbeingrequired(Table5). For geomorphological categories, level 1 in the Lund maps, identifying corresponding classes or groupings was fairly straightforward for “Land”, “Shallow surround” (shallow areas outside the fore reef), “Reef crest”, “Fore reef” and “Deep water”. Likewise, the bottom cover (level 2) maps were used in the assessment of “Deep benthic cover” (dark benthos of unknown composition in deepwater),“Coralcontaining”areas(placeswherelivecoralwouldbefound),andthreedifferent comparisonsforbaresandorrock,“Bare1–3”. Thebenthichabitatclassesatlevel3wereconsidered too specific to provide a relevant assessment of direct map correspondence. Therefore, it was not possibletocomparemixedclasseswithvegetatedcoverdirectly,soallclassesthatincludedseagrass and/or brown macroalgae were aggregated and compared to the GEM class “Dense vegetation”. AcomparisonbetweenGEM“Densevegetation”andLund“Sand”wasalsoincludedbecauseitwas apparentfromvisualinterpretationthatthiscouldhaveahighcorrespondence. The maps from the two production efforts were initially compared by visual assessment, supportedbythecalculationoftheedgesimilarityindexforthepairsofclassesreferringtocoral, vegetation and deep benthic cover. This index, ranging from 0 to 1, represents the percentage of overlapofclassboundaries,thusassessinggeometriccorrespondencebetweenthemapsproducts. AsrecommendedbyLizarazo[38],theedgeswereconsideredasoverlappingwithinatolerancezone, heredefinedasabufferofapproximatelytwotimesthesensorgroundresolution,i.e.,atotaloffour metersforWV-2andfivemetersforQB2images. RemoteSens.2016,8,52 8of20 Table5.Pairingofselectedclassesforcomparisons. Comparison GEMClasses LundClasses OBIALevel Geomorphologylevel Land Land Land 1 Shallowsurround Shallowsand Shallowwaters 1 Reefcrest Reefcrest/highcoralcover Reefcrest 1 Forereef Reefslope/forereef Forereef 1 Deepwater Deepwater Deepwater 1 Benthichabitatlevel Deepbenthiccover Deepbenthiccover Deepbenthiccover 2 Bare1 Sandwiththinvegetation Sand 2 Bare2 Sandoverrocksubstrate Sand 2 Bare3 Sandoverrocksubstrate Rock 2 Vegetation-sandconfusion Densevegetation Sand 2 Sand/RubblewithSeagrass Sand/RubblewithSeagrassandRocks Sand/RubblewithSeagrassand RockswithBrownMacroalgae Vegetation Densevegetation Sand/RubblewithRocks 3 withBrownMacroalgae RockwithBrownMacroalgae,and RockwithBrownMacroalgae andSandandRubble Reefcrest/highcoralcover Coralcontaining Coral 2 andReefslope/forereef Additionally, each island’s map was overlaid to develop confusion matrices of class correspondencebetweentheGEMandLundproducts. Thisledtoatotalof18confusionmatrices quantifyingthespatialagreementoftheselectedclasses.Tounderstandtheconsistencyofthemapping resultsacrossthesixislands,WilcoxonSigned-Rankstestandlinearintercorrelationwereappliedto thenumberofpixelscoincidingforeachselectedclasspair. Wilcoxon’sp-valueforpairedsamples indicatestheprobabilitythattheobservedresultswouldhappenifthenullhypothesisweretrue,i.e., ifthemedianofthedifferencesofthesampleswerezero. Thus,smallvaluesofp-valueshowthatthere isasystematicover-orunderestimationoverthesixislands,whereasanon-significantresultmeans eithertheagreementwasverygoodbetweenthetwoproductionmethodsortheproductionmethods disagreedbutinanon-systematicway. Thecoefficientofdeterminationofthelinearintercorrelation providesanevaluationofhowmuchthequantificationresultingfromonemethodologyisreliable asapredictorforthequantificationoftheother. Inbothproductioneffortseachislandwasmapped independently,soevaluatingtheresultsacrossthesixislandswillrevealanysystematicbiasesinthe productionmethods,encompassingbothmappingalgorithmandoperatordependentfactors. Theapplicabilityofthemapsasnaturalresourcesmanagementtoolswasassessedbyevaluating theconsistencyofthemapsinansweringhypotheticalquestionsbasedoninformationneedsfromthe PSEPA’smanagement: (1) Whatistheextentofcoralcontaininghabitatsperisland,andthetotalwithintheprotectedarea? (2) What is the extent of macroalgae or seagrass areas per island, and the total within the protectedarea? (3) Whereareareasofdeepbenthiccovertobefound,possiblycurrentlyunknownandafuture focusforfieldsurveys? RemoteSens.2016,8,52 9of20 Thevaluesoftheextentsofcoral,vegetationanddeepbenthiccoverwereestimatedaccording totheclassgroupsalreadypresented,althoughthisgroupingcouldbedifferentdependingonthe interpretationoftheenduser,particularlyforthestudyofvegetation. 4. ResultsandDiscussion 4.1. AccuracyAssessment,EdgeSimilarityandClassAgreementResults Accuracyassessmentwithrespecttothefielddataindicatedthemapshavevariablebutgenerally reasonable accuracy: 56% to 72% for GEM and 43% to 93% for Lund (Table 6). These values are considered adequate for management and planning purposes, for which a value of about 60% is generallyrecommended[3,39]. Moreover,theobtainedresultsfallwithintherangeofvaluesfoundin currentresearchresultsofcoralreefhabitatmapping[7,12,18,40]. Therefore,bothproductionefforts resultedinmapsthatweregenerallyofadefensiblequalityinabenthichabitatmappingcontext. Table6.Accuracyassessmentresultsforthepixelbasedandobjectbasedmaps. GEM Lund Island GeneralizedThreeClassProduct(%) Level2(%) Level3(%) BaixoSantoAntonio 58 91 74 Mafamede 66 93 56 PugaPuga 63 83 60 BaixoMiguel 72 44 35 Njovo 61 82 55 Caldeira 56 58 43 Afirst,roughvisualassessmentofthemappingoutputs(Figure2),conductedbyoverlapping thethreeOBIAmapsonthepixelbasedones,allowedtheidentificationofcleardifferences. While land and the overall shape of the coral reef system matched well, the deep benthic classes—deep benthiccoveranddeepsand—wereoftenmoreextensiveinGEMmaps. Anotherobservationisthat thebenthichabitat(level3)Lundmapsshowmoreclearlydelineatedareas,particularlywithinthe lagoonandreefcrest,whileavoidingthe“saltandpepper”effect,whichisafrequentlyidentified advantageoftheobjectbasedapproach[14,41,42]. Theedgesimilarityresultssupportthevisualinterpretation,quantifyingthedeepbenthiccover edgecorrespondenceasrangingfrom2%to16%(Table7). Theremainingclasscomparisons,more complex to assess visually due to the number of classes included, shows a general good level of agreement,withanedgesimilarityindexinorderof10%to30%forcoralcontainingclassesandabove 30%forvegetationinthemajorityofthelocations. Theconfusionmatricescomparingthemappairsshowveryhigh(>75%)classagreementfor “Land”,“Forereef”and“Deepwater”inallthesixstudylocations(Table8). Twoofthecomparisons relatedtosandorrocksubstrate,“Bare1”and“Bare2”,hadaveryhighagreementforabouthalf ofthelocations,while“Bare3”(Sandoverrocksubstratevs. Rock)hadveryhighagreementonlyat one. The“Coralcontaining”comparisonhadverygoodagreementatthreesitesandpooragreement atonlyone. Additionally,fromthe18generatedconfusionmatrices,itwaspossibletoobservethat “Sandonrocksubstrate”,“Densevegetation”and“Sandwiththinvegetation”displayahighlevel ofagreementwiththeclass“Lagoon”fromtheLundclassificationscheme. Thisresultwasexpected, andsupportsadequatespatialcorrespondenceofclasses,asthesethreearegenerallyfoundinthat geomorphologicalzone. RemoteSens.2016,8,52 10of20 Remote 2016, 8, 52 10 of 20 FFiigguurree 22.. EExxaammppllee ooff ((aa,,bb)) rraaww ddaattaa ((mmiinn aanndd mmaaxx ppeerrcceennttaaggee cclliipp == 00..22));; ((cc,,dd)) GGEEMM aanndd ((ee,,ff)) LLuunndd mmaappppiinngg rreessuullttss ffoorr BBaaiixxoo SSaannttoo AAnnttoonniioo aanndd MMaaffaammeeddee;; BBCC==bbeenntthhiicc ccoovveerr,, BBMM == bbrroowwnn mmaaccrrooaallggaaee, , CC == ccoorraal,l ,FFRR == foforer erereefe,f L,L = =lalnadn,d N,NI =I N=oN ionfionrfmoramtiaotnio, nR,=Rro=crko(csk),( sR)C,R =C re=efr ecerefsctr,e RstF, =R Fre=ef rfereofnftr,o RnSt , =R rSe=efr seleofpsel,o Rpue, =R ruu=bbrlueb, bSl e=, sSan=ds,a SnGd ,=S sGea=gsreaassg,r UasPs=,uUnPp=ruoncepsrsoecde,sVse =d ,vVeg=evtaetgioenta, tWion =, wWa=tewr. ater.
Description: